# On nearly parallel $G_{2}$-structures 

Th. Friedrich ${ }^{\text {a,* }}$, I. Kath ${ }^{\text {a }}$, A. Moroianu ${ }^{\text {b }}$, U. Semmelmann ${ }^{\text {a }}$<br>" Humboldt-I/niversität zu Berlin, Institut für Reine Mathematik, Ziegelstraße 13 A, D-I0099 Berlin. Germany<br>${ }^{\text {b }}$ Centre de Mathématiques. Ecole Polytechnique, 91128 Palaiseau, Cedex, France


#### Abstract

A nearly parallel $G_{2}$-structure on a seven-dimensional Riemannian manifold is equivalent $t 0$ a spin structure with a Killing spinor. We prove general results about the automorphism group of such structures and we construct new examples. We classify all nearly parallel $G_{2}$-manifolds with large symmetry group and in particular all homogeneous nearly parallel $G_{2}$-structures.


Subj. Class.: Differential geometry
1991 MSC: 53C25, 57R15
Kevwords: $G_{2}$-structure; Sasakian manifold; Killing spinor

## Contents

1. Introduction 260
2. The exceptional group $G_{2} 261$
3. Topological and geometrical $G_{2}$-reductions 265
4. Nearly parallel $G_{2}$-structures, Killing spinors and contact geometry 270
5. New examples 273
6. The automorphism group of a nearly parallel $G_{2}$-structure 276
7. Nearly parallel $G_{2}$-structures with large symmetry group 282

References 286

[^0]
## 1. Introduction

A nearly parallel $G_{2}$-structure on a seven-dimensional manifold is a 3-form $\omega^{3}$ of special algebraic type satisfying the differential equation

$$
\mathrm{d} \omega^{3}=-8 \lambda\left(* \omega^{3}\right)
$$

for some constant $\lambda \neq 0$. The existence of $\omega^{3}$ is equivalent to the existence of a spin structure with a Killing spinor, i.e. a spinor $\psi$ satisfying

$$
\nabla_{X} \psi=\lambda X \cdot \psi \quad \forall X \in T M .
$$

In case $\lambda=0, \omega^{3}$ defines a geometric $G_{2}$-structure ( $\mathbf{d} \omega^{3}=0, \delta \omega^{3}=0$ ). Excluding the case of the seven-dimensional sphere there are three types of nearly parallel $G_{2}$-structures depending on the dimension of the space $K S$ of all Killing spinors. Nearly parallel $G_{2}{ }^{-}$ structures with $\operatorname{dim}(K S)=3$ are 3-Sasakian manifolds and nearly parallel $G_{2}$-structures such that $\operatorname{dim}(K S)=2$ are Einstein-Sasakian spaces. There are examples of compact nearly parallel $G_{2}$-manifolds where the dimension of the space of all Killing spinors equals one and we call such spaces proper $G_{2}$-manifolds.

Recently Joyce [22] solved an open problem in holonomy theory, namely the existence problem of compact seven-dimensional Riemannian manifolds with $G_{2}$-holonomy. On the other hand, Boyer et al. [7] constructed new compact examples of 3-Sasakia manifolds and investigated the global geometry of these spaces. In dimension seven, 3-Sasakian manifolds are special nearly parallel $G_{2}$-structures and such manifolds have been studied a long time ago (see $[12,20]$ ). However, during the last 10 years, these special Einstein manifolds appeared as Einstein spaces where the Dirac operator has the smallest possible eigenvalue and many compact examples are known since this time (see [11]). The aim of this paper is to revisit once again the results as well as the examples of compact nearly parallel $G_{2^{-}}$ structures known up to now. Moreover, starting from 3-Sasakian manifold we construct new manifolds with a nearly parallel $G_{2}$-structure. A 3-Sasakian manifold admits a second Einstein metric obtaincd from the given one by scaling the metric in the directions of the orbits of the $\operatorname{Spin}(3)$-action. It turns out that this Einstein metric is a proper $G_{2}$-structure and we obtain new nearly parallel $G_{2}$-structures from the examples of 3-Sasakian manifolds mentioned above.

Finally we investigate the automorphism group of a compact nearly $G_{2}$-manifold and we classify in particular all homogeneous $G_{2}$-manifolds. The automorphism group $G=$ $\operatorname{Aut}\left(M^{7}, \omega^{3}\right)$ of a nearly parallel $G_{2}$-manifold has some special properties. In particular, if $\operatorname{dim}(G) \geq 10, G$ acts transitively on $M^{7}$. The zero set of infinitesimal automorphisms is either one- or three-dimensional and a four-dimensional orbit of this group action is of special topological and geometric type. Moreover, the isotropy groups $G(m)$ are subgroups of the exceptional $G_{2}$ and one can list them explicitly. Combining all these informations we can classify the compact, nearly parallel $G_{2}$-manifolds with a large symmetry group.

## 2. The exceptional group $G_{2}$

The group $G_{2}$ is a compact, simple and simply connected 14 -dimensional Lie group. In this section we collect some basic algebraic facts about this group. In particular, we will define $G_{2}$ as the isotropy group of a real $\operatorname{Spin}(7)$-spinor. Since in dimension seven these spinors correspond to the 3 -forms $\omega^{3}$ of general type in $\Lambda^{3}\left(\mathbb{R}^{7}\right)$, this definition of the group $G_{2}$ is equivalent to the usual one as the subgroup of $G L(7 ; \mathbb{R})$ preserving the 3 -form in $\mathbb{R}^{7}$

$$
\begin{align*}
\omega_{0}^{3}= & e_{1} \wedge e_{2} \wedge e_{7}+e_{1} \wedge e_{3} \wedge e_{5}-e_{1} \wedge e_{4} \wedge e_{6} \\
& -e_{2} \wedge e_{3} \wedge e_{6}-e_{2} \wedge e_{4} \wedge e_{5}+e_{3} \wedge e_{4} \wedge e_{7}+e_{5} \wedge e_{6} \wedge e_{7} \tag{I}
\end{align*}
$$

The advantage of this point of view is that a topological $G_{2}$-structure on a seven-dimensional manifold defines a Riemannian metric as well as a spinor field of constant length. We shall use the equivalence between topological $G_{2}$-structures and 3-forms of general type and between these and Riemannian metrics together with a unit spinor field many times in our investigations of $G_{2}$-structures of special geometrical type.

Let $e_{1}, \ldots, e_{7}$ be the standard orthonormal basis of the Euclidian vector space $\mathbb{R}^{7}$ and denote by $\operatorname{Cliff}\left(\mathbb{R}^{7}\right)$ the real Clifford algebra. We will use the real representation of this algebra on $\Delta_{7}:=\mathbb{R}^{8}$ given on its generators by

$$
\begin{array}{ll}
e_{1}=E_{18}+E_{27}-E_{36}-E_{45}, & e_{2}=-E_{17}+E_{28}+E_{35}-E_{46}, \\
e_{3}=-E_{16}+E_{25}-E_{38}+E_{47}, & e_{4}=-E_{15}-E_{26}-E_{37}-E_{48}, \\
e_{5}=-E_{13}-E_{24}+E_{57}+E_{68}, & e_{6}=E_{14}-E_{23}-E_{58}+E_{67}, \\
e_{7}=E_{12}-E_{34}-E_{56}+E_{78}, &
\end{array}
$$

where $E_{i j}$ is the standard basis of the Lie algebra $\check{\circ}(थ)$ :

$$
E_{i j}=\left(\begin{array}{ccccc}
0 & \cdots & \cdots & \cdots & 0 \\
\cdots & \cdots & \ldots & -1 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & 1 & \ldots & \cdots & \cdots \\
0 & \ldots & \cdots & \cdots & 0
\end{array}\right) \cdots i
$$

If we restrict this representation to $\operatorname{Spin}(7) \subset \operatorname{Cliff}\left(\mathbb{R}^{7}\right)$ we obtain the real spin representation $\kappa: \operatorname{Spin}(7) \longrightarrow S O\left(\Delta_{7}\right)$. The group $\operatorname{Spin}(7)$ acts transitively on the sphere

$$
S\left(\Delta_{7}\right)=\{\|\psi\|=1\} \subset \Delta_{7}=\mathbb{R}^{8}
$$

We now define the group $G_{2}$ as the subgroup of $\operatorname{Spin}(7)$ preserving the spinor $\psi_{0}:=$ ${ }^{t}(1,0, \ldots, 0)$

$$
G_{2}=\left\{g \in \operatorname{Spin}(7) \mid g \psi_{0}=\psi_{0}\right\}
$$

Consequently the sphere $S^{7}$ is diffeomorphic to the homogeneous space $\operatorname{Spin}(7) / G_{2}$ and we obtain from the exact homotopy sequence of this fibration

$$
\pi_{0}\left(G_{2}\right)=0, \quad \pi_{1}\left(G_{2}\right)=0, \quad \pi_{2}\left(G_{2}\right)=0, \quad \pi_{3}\left(G_{2}\right)=\mathbb{Z}
$$

Let us now calculate the Lie algebra $\mathrm{q}_{2}$ of $G_{2}$. We identify the Lie algebra of $\operatorname{Spin}(7)$ with $\mathfrak{m i n}(7)=\left\{\omega=\sum_{i<j} \omega_{i j} e_{i} e_{j} \mid \omega_{i j} \in \mathbb{R}\right\} \subset$ Cliff $\left(\mathbb{R}^{7}\right)$. The Lie algebra $\underline{q}_{2}$ is the subalgebra of this algebra containing all elements $\omega$ satisfying $\omega \cdot \psi_{0}=0$. Let $\omega=\sum_{i<j} \omega_{i j} e_{i} e_{j}$ be


$$
\begin{aligned}
& \omega_{12}+\omega_{34}+\omega_{56}=0, \quad-\omega_{13}+\omega_{24}-\omega_{67}=0, \quad-\omega_{14}-\omega_{23}-\omega_{57}=0, \\
& -\omega_{16}-\omega_{25}+\omega_{37}=0, \quad \omega_{15}-\omega_{26}-\omega_{47}=0, \quad \omega_{17}+\omega_{36}+\omega_{45}=0, \\
& \omega_{27}+\omega_{35}-\omega_{46}=0 .
\end{aligned}
$$

We consider the universal covering $\operatorname{Spin}(7) \longrightarrow S O(7)$ of the special orthogonal group $S O(7)$. Because of $(-1) \notin G_{2}$, there is an isomorphism from $G_{2}$ onto a subgroup of $S O(7)$, which we also denote by $G_{2}$. We now describe this group. This will yield a second definition of $G_{2}$ using 3-forms on $\mathbb{R}^{7}$. The key point is a special relation in dimension seven between real spinors and generic 3 -forms.

Let $\psi \in \Delta_{7}$ be a fixed spinor. Then the map

$$
\mathbb{R}^{7} \ni X \longmapsto X \psi \in \Delta_{7}
$$

is an isomorphism between $\mathbb{R}^{7}$ and the orthogonal complement of $\psi$ in $\Delta_{7}$. We observe that for $X, Y \in \mathbb{R}^{7}$ the spinors $\psi$ and $Y X \psi+\langle X, Y\rangle \psi$ are orthogonal to each other. Therefore we can define a $(2,1)$-lensor $A_{\psi}$ by

$$
\begin{equation*}
Y X \psi=-\langle X, Y\rangle \psi+A_{\psi}(Y, X) \psi \tag{2}
\end{equation*}
$$

$A_{\psi}$ has the following properties:
(1) $A_{\psi}(X, Y)=-A_{\psi}(Y, X)$,
(2) $\left\langle Y, A_{\psi}(Y, X)\right\rangle=0$,
(3) $A_{\psi}\left(Y, A_{\psi}(Y, X)\right)=-\|Y\|^{2} X+\langle X, Y\rangle Y$.

It defines a 3-form $\omega_{\psi}^{3}$ by $\omega_{\psi}^{3}(X, Y, Z)=\left\langle X, A_{\psi}(Y, Z)\right\rangle$.
Vice versa, a (2,1)-tensor $A$ on $\mathbb{R}^{7}$ which has properties (1)-(3) defines a one-dimensional subspace $E(A)=\left\{\psi \in \Delta_{7} \mid Y X \psi=-\langle X, Y\rangle \psi+A(Y, X) \psi\right\}$. Consequently, we obtain a bijection from the projective space $P\left(\Delta_{7}\right)=\mathbb{R P}^{7}$ onto the set of 3-forms $\omega^{3} \in$ $\Lambda^{3}\left(\mathbb{R}^{7}\right)$ whose tensor $A$ defined by $\omega^{3}(X, Y, Z)=\langle X, A(Y, Z)\rangle$ has the above-mentioned properties.

In particular, if $\psi=\psi_{0}:={ }^{t}(1,0, \ldots, 0)$, then a direct calculation yields $\omega_{\psi_{0}}^{3}=\omega_{0}^{3}$, where $\omega_{0}^{3}$ is given by Eq. (1).

Let $g$ be an element of $\operatorname{Spin}(7)$ and $\pi(g)$ the corresponding element in $S O(7)$. We compare the 3 -forms associated to the spinors $\psi$ and $g \psi$ and obtain the equation

$$
\omega_{g \psi}^{3}=\left(\pi\left(g^{-1}\right)\right)^{*} \omega_{\psi}^{3} .
$$

The 3-form $\omega_{\psi}^{3}$ defines the spinor $\psi$ up to a real number. Hence, the image of the group $G_{2} \subset \operatorname{Spin}(7)$ with respect to $\pi: \operatorname{Spin}(7) \longmapsto S O(7)$ equals

$$
G_{2}=\left\{A \in S O(7) \mid A^{*} \omega_{\psi_{0}}^{3}=\omega_{\psi_{0}}^{3}\right\}
$$

However, the equation $A^{*} \omega_{0}^{3}=\omega_{0}^{3}$ for $A \in G L(7)$ implies $A \in S O(7)$. See for a proof [8,24]. Using this, we obtain

$$
G_{2}=\left\{A \in G L(7) \mid A^{*} \omega_{0}^{3}=\omega_{0}^{3}\right\}
$$

Remark 2.1. Similarly, we can investigate the action of $\operatorname{Spin}(7)$ on the Stiefel manifolds $V_{2}\left(\Delta_{7}\right)$ and $V_{3}\left(\Delta_{7}\right)$ of orthonormal pairs and triples of spinors, respectively. This action is transitive, too. The isotropy group of a fixed pair of spinors is isomorphic to $S U(3)$ and the one of a triple is isomorphic to $S U(2)$.

Remark 2.2. The $G L(7)$-orbit $\Lambda_{+}^{3}\left(\mathbb{R}^{7}\right):=\left\{A^{*} \omega_{0}^{3} \mid A \in G L(7)\right\}$ is an open subset of $\Lambda^{3}\left(\mathbb{R}^{7}\right)$ since $\operatorname{dim} \Lambda^{3}\left(\mathbb{R}^{7}\right)=35$ and $\operatorname{dim} G L(7)-\operatorname{dim} G_{2}=49-14=35$. Let $\alpha^{3}$ be an element of this orbit, i.e. $\alpha^{3}=A^{*} \omega^{3}$ for some $A \in G L(7)$. Then $\alpha^{3}$ defines an inner product on $\mathbb{R}^{7}$ by $\langle.\rangle_{\alpha}:=A^{*}\{$,$\rangle , an orientation O_{\alpha}:=A^{*}\left(e_{1} \wedge \cdots \wedge e_{7}\right)$ and a corresponding Hodge operator $*_{\alpha}: \Lambda^{p}\left(\mathbb{R}^{7}\right) \longmapsto \Lambda^{7-p}\left(\mathbb{R}^{7}\right)$.

Remark 2.3. Let $\psi_{1}, \psi_{2} \in \Delta_{7}$ be spinors of the same length and $\xi \in \mathbb{R}^{7}$ such that $\xi \psi_{1}=\psi_{2}$. Then we have for the induced 3 -forms $\omega \omega_{1}^{3}=\omega_{\psi_{1}}^{3}$ and $\omega_{2}^{3}=\omega_{\psi_{2}}^{3}$

$$
\omega_{2}=-\omega_{1}+2\left(\xi-\omega_{1}\right) \wedge \xi
$$

In order to prove Remark 2.3, we use the equations which define the tensors $A_{1}=A_{\psi / 1}$ and $A_{2}=A_{\psi_{2}}$. From $Y X \psi_{2}=-\langle Y, X\rangle \psi_{2}+A_{2}(Y, X) \psi_{2}$ it follows that $Y X \xi \psi_{1}=$ $-\langle Y, X\rangle \xi \psi_{1}+A_{1}(Y, X) \xi \psi_{1}$. By the definition of $A_{1}$ this is equivalent to

$$
\begin{aligned}
& -\langle X, \xi\rangle Y \psi_{1}-\left\langle Y, A_{1}(X, \xi)\right\rangle \psi_{1}+A_{1}\left(Y, A_{1}(X, \xi)\right) \psi_{1} \\
& =-\langle Y, X\rangle \xi \psi_{1}-\left\langle A_{2}(Y, X), \xi\right\rangle \psi_{1}+A_{1}\left(A_{2}(Y, X), \xi\right) \psi_{1}
\end{aligned}
$$

or to

$$
\begin{aligned}
& \left(-\langle X, \xi\rangle Y+A_{1}\left(Y, A_{1}(X, \xi)\right)+\langle Y, X\rangle \xi-A_{1}\left(A_{2}(Y, X), \xi\right)\right) \psi_{1} \\
& \quad=\left(\left\langle Y, A_{1}(X, \xi)\right\rangle+\left\langle A_{1}(Y, X), \xi\right\rangle\right) \psi_{1} .
\end{aligned}
$$

Since the Clifford multiplication of real spinors by a vector is anti-symmetric we conclude that

$$
\begin{align*}
& A_{1}\left(Y, A_{1}(X, \xi)\right)+\langle Y, X\rangle \xi=A_{1}\left(A_{2}(Y, X), \xi\right)+\langle X, \xi\rangle Y,  \tag{3}\\
& \left\langle Y, A_{1}(X, \xi)\right\rangle=\left\langle A_{2}(Y, X), \xi\right\rangle \tag{4}
\end{align*}
$$

where (4) is equivalent to $\omega_{1}(X, Y, \xi)=\omega_{2}(X, Y, \xi)$ and to $A_{1}(X, \xi)=A_{2}(X, \xi)$.

Let now $X, Y, Z \in \mathbb{R}^{7}$ be vectors orthogonal to $\xi$. There exists an $X \in \mathbb{R}^{7}, X \perp \xi$ such that $Z=A_{1}(X, \xi)=A_{2}(X, \xi)$. From Eqs. (3) and (4) we conclude

$$
\begin{aligned}
\left\langle W, A_{1}(Y, Z)\right\rangle & =\left\langle W, A_{1}\left(Y, A_{1}(X, \xi)\right)\right\rangle=\left\langle W, A_{1}\left(A_{2}(Y, X), \xi\right)\right\rangle \\
& =\left\langle W, A_{2}\left(A_{2}(Y, X), \xi\right)\right\rangle=-\left\langle W, A_{2}\left(\xi, A_{2}(Y, X)\right)\right\rangle,
\end{aligned}
$$

where the last equation holds because of property (3) of the (2,1)-tensor $A_{2}$. Consequently, we get $\omega_{1}(W, Y, Z)=-\omega_{2}(W, Y, Z)$. The assertion follows.

Now we recall the decomposition of $\Lambda^{p}\left(\mathbb{R}^{7}\right)$ into irreducible components with respect to the action of $G_{2}$.

## Proposition 2.4.

(1) $\mathbb{R}^{7}=\Lambda^{1}\left(\mathbb{R}^{7}\right)=: \Lambda_{7}^{1}$ is irreducible.
(2) $\Lambda^{2}\left(\mathbb{R}^{7}\right)=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$, where

$$
\begin{aligned}
& \Lambda_{7}^{2}=\left\{\alpha^{2} \in \Lambda^{2} \mid *\left(\omega^{3} \wedge \alpha^{2}\right)=2 \alpha^{2}\right\}=\left\{X-\omega^{3} \mid X \in \mathbb{R}^{7}\right\} \\
& \Lambda_{14}^{2}=\left\{\alpha^{2} \in \Lambda^{2} \mid *\left(\omega^{3} \wedge \alpha^{2}\right)=-\alpha^{2}\right\}=9_{2}
\end{aligned}
$$

(3) $\Lambda^{3}\left(\mathbb{R}^{7}\right)=\Lambda_{1}^{3} \oplus \Lambda_{7}^{3} \oplus \Lambda_{27}^{3}$, where

$$
\begin{aligned}
& \Lambda_{1}^{3}=\left\{t \omega^{3} \mid t \in \mathbb{R}^{1}\right\}, \quad \Lambda_{7}^{3}=\left\{*\left(\omega^{3} \wedge \alpha^{1}\right) \mid \alpha^{1} \in \Lambda_{7}^{1}\right\} \\
& \Lambda_{27}^{3}=\left\{\alpha^{3} \in \Lambda^{3} \mid \alpha^{3} \wedge \omega^{3}=0, \alpha^{3} \wedge * \omega^{3}=0\right\}
\end{aligned}
$$

Proposition 2.5. The wedge product $\omega^{3} \wedge: \Lambda^{3}\left(\mathbb{R}^{7}\right) \longrightarrow \Lambda^{6}\left(\mathbb{R}^{7}\right)$ has the following properties with respect to the decomposition $\Lambda^{3}\left(\mathbb{R}^{7}\right)=\Lambda_{1}^{3} \oplus \Lambda_{7}^{3} \oplus \Lambda_{27}^{3}$ :
(1) $\omega^{3} \wedge\left(\Lambda_{1}^{3} \oplus \Lambda_{27}^{3}\right)=0$;
(2) if $\eta^{3}=*\left(\omega^{3} \wedge \alpha^{1}\right) \in \Lambda_{7}^{3}$, then $\omega^{3} \wedge \eta^{3}=-4 * \alpha^{1}$.

Similarly, the wedge product $* \omega^{3} \wedge: \Lambda^{2}\left(\mathbb{R}^{7}\right) \longrightarrow \Lambda^{6}\left(\mathbb{R}^{7}\right)$ has the following properties with respect to the decomposition $\Lambda^{2}\left(\mathbb{R}^{7}\right)=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$ :
(3) $\left(* \omega^{3}\right) \wedge \Lambda_{14}^{2}=0$;
(4) if $\alpha^{2}=X_{-} \omega^{3} \in \Lambda_{7}^{2}$, then $\left(* \omega^{3}\right) \wedge \alpha^{2}=3(* X)$.

Next we study the action of the group $G_{2}$ on the Grassmannian manifolds $G_{2}\left(\mathbb{R}^{7}\right)$ and $G_{3}\left(\mathbb{R}^{7}\right)$ of oriented two- and three-dimensional linear subspaces in $\mathbb{R}^{7}$.

## Proposition 2.6.

(1) $G_{2}$ acts transitively on $G_{2}\left(\mathbb{R}^{7}\right)$.
(2) $G_{2}$ acts on $G_{3}\left(\mathbb{R}^{7}\right)$ with cohomogeneity one. The principal orbits have dimension 11 and there are two exceptional orbits of dimension eight.
(3) For any $E^{3} \in G^{3}\left(\mathbb{R}^{7}\right)$ the inequality $\left|\omega^{3}\left(E^{3}\right)\right| \leq 1$ holds. The three-dimensional subspace $E^{3}$ belongs to the exceptional orbit with respect to the $G_{2}$-action if and only if $\left|\omega^{3}\left(E^{3}\right)\right|=1$.

Proof. $G_{2}\left(\mathbb{R}^{7}\right)=S O(7) /[S O(2) \times S O(5)]$ is a 10 -dimensional manifold. On the other

subalgebra of $\varsigma o(7)$ defined by the equations

$$
\begin{aligned}
& \omega_{1 i}=\omega_{2 i}=0 \text { for } i \geq 3, \quad \omega_{57}=\omega_{37}=\omega_{47}=0, \\
& \omega_{36}+\omega_{45}=\omega_{35}-\omega_{46}=\omega_{24}-\omega_{67}=0, \quad \omega_{12}+\omega_{34}+\omega_{56}=0 .
\end{aligned}
$$

Hence the $G_{2}$-orbit of the standard 2-plane $\operatorname{Span}\left\{e_{1}, e_{2}\right\}$ has dimension 10. Since this orbit is a compact submanifold of $G_{2}\left(\mathbb{R}^{7}\right)$, it coincides with the Grassmannian manifold.

Fix a three-dimensional subspace $E^{3}$. Since $G_{2}$ acts transitively on $G_{2}\left(\mathbb{R}^{7}\right)$ in the $G_{2}-$ orbit through $E^{3}$ there exists a three-dimensional subspace containing the vectors $e_{1}$ and $e_{2}$. For simplicity we also denote this space by $E^{3}$. The isotropy group of the vectors $e_{1}, e_{2}$ inside $G_{2}$ is the group $S U(2)$ acting on $\operatorname{Span}\left\{e_{3}, e_{4}, e_{5}, e_{6}\right\}$. Therefore we may assume that the third vector of $E^{3}$ is given by $\cos (\varphi) e_{3}+\sin (\varphi) e_{7}$. Consequently, any $G_{2}$-orbit in $G_{3}\left(\mathbb{R}^{7}\right)$ contains a subspace of the special form

$$
E^{3}(\varphi)=\operatorname{Span}\left\{e_{1}, e_{2}, \cos (\varphi) e_{3}+\sin (\varphi) e_{7}\right\}
$$

The Lie algebra $\mathfrak{h}(\varphi)$ of the isotropy group of $E^{3}(\varphi)$ is the nine-dimensional subalgebra of $\leftrightarrows o(7)$ given by the equations

$$
\begin{aligned}
& \omega_{14}=\omega_{15}=\omega_{16}=\omega_{24}=\omega_{25}=\omega_{26}=0, \quad \omega_{37}=0 \\
& \cos (\varphi) \omega_{34}+\sin (\varphi) \omega_{74}=\cos (\varphi) \omega_{35}+\sin (\varphi) \omega_{75}=\cos (\varphi) \omega_{36}+\sin (\varphi) \omega_{76}=0 \\
& \sin (\varphi) \omega_{13}-\cos (\varphi) \omega_{17}=\sin (\varphi) \omega_{23}-\cos (\varphi) \omega_{27}=0
\end{aligned}
$$

We calculate the intersection of the Lie algebras $\mathfrak{q}_{2}$ and $\mathfrak{h}(\varphi)$. It turns out that

$$
\operatorname{dim}\left[\varphi_{2} \cap \mathfrak{h}(\varphi)\right]= \begin{cases}3 & \text { if } \cos (\varphi) \neq 0 \\ 6 & \text { if } \cos (\varphi)=0\end{cases}
$$

Consequently, the $G_{2}$-orbit of the space $E^{3}(\varphi)$ has dimension 11 (in case $\cos (\varphi) \neq 0$ ), or dimension eight (in case $\cos (\varphi)=0$ ). Moreover, we calculate the value $\omega^{3}\left(E^{3}(\varphi)\right.$ ):

$$
\omega^{3}\left(E^{3}(\varphi)\right)=\sin (\varphi)
$$

Remark 2.7. A three-dimensional subspace $E^{3} \subset \mathbb{R}^{7}$ is said to be $G_{2}$-special if its $G_{2}$-orbit is an exceptional orbit. The following conditions are equivalent:
(i) $E^{3}$ is a special $G_{2}$-subspace;
(ii) $\left|\omega^{3}\left(E^{3}\right)\right|=1$;
(iii) for any vectors $X, Y \in E^{3}$ and $Z \perp E^{3}$ the relation $\omega^{3}(X, Y, Z)=0$ holds.

## 3. Topological and geometrical $G_{2}$-reductions

Let $M^{7}$ be a seven-dimensional manifold and $R\left(M^{7}\right)$ the frame bundle of $M^{7}$. We define the bundle $\Lambda_{+}^{3}\left(M^{7}\right)$ by

$$
\Lambda_{+}^{3}\left(M^{7}\right):=R\left(M^{7}\right) \times_{G L(7)} \Lambda_{+}^{3}\left(\mathbb{R}^{7}\right) \subset R\left(M^{7}\right) \times_{G L(7)} \Lambda^{3}\left(\mathbb{R}^{7}\right)=\Lambda^{3}\left(M^{7}\right)
$$

Definition 3.1. A topological $G_{2}$-structure on $M^{7}$ is a $G_{2}$-reduction of the frame bundle $R\left(M^{7}\right)$, i.e. a subbundle $P_{G_{2}}$ satisfying


Similarly we define topological $S U(2)-, S U(3)$ - and $\operatorname{Spin}(7)$-structures.

The fact that $G_{2}$ is a subset of $\operatorname{SO}(7)$ and of $\operatorname{Spin}(7)$ implies that a $G_{2}$-structure $P_{G_{2}}$ on $M^{7}$ induces an orientation of $M^{7}$ (i.e. $\omega_{1}=0$ ), a Riemannian metric $g$ on $M^{7}$ such that the corresponding $S O(7)$-bundle equals $P_{G_{2}} \times{ }_{G_{2}} S O(7)$, and a spin structure $P_{G_{2}} \times{ }_{G_{2}} \operatorname{Spin}(7)$ (i.e. $\omega_{2}=0$ ). Furthermore it defines the following nowhere vanishing spinor $\psi \in \Gamma(S)$ in the real spinor bundle $S=P_{G_{2}} \times{ }_{G_{2}} \Delta_{7}$ of $M^{7}$. Since $G_{2} \subset \operatorname{Spin}(7)$ is the isotropy group of $\psi_{0} \in \Delta_{7}$ the map $\psi: P_{G_{2}} \longrightarrow \Delta_{7}, \psi(p)=\psi_{0}$, has the property $\psi(p g)=g^{-1} \psi$ for all $g \in G_{2}$ and is therefore a section in $S$. Because of the $G_{2}$-invariance of $\omega_{0}$ the $G_{2}$-structure defines in the same way a section $\omega^{3}$ in $\Lambda_{+}^{3}\left(M^{7}\right)=R\left(M^{7}\right) \times{ }_{G L(7)} \Lambda_{+}^{3}\left(\mathbb{R}^{7}\right)=$ $P_{G_{2}} \times{ }_{G_{2}} \Lambda_{+}^{3}\left(\mathbb{R}^{7}\right)$, by $\omega^{3}: P_{G_{2}} \longrightarrow \Lambda_{+}^{3}\left(\mathbb{R}^{7}\right), \omega^{3}(p)=\omega_{0}^{3}$. On the other hand the spinor $\psi$ defines a (2, 1)-tensor field $A=A_{\psi}$ (see Eq. (2)) on $M^{7}$ and we have $\omega^{3}=g(\cdot, A(\cdot, \cdot))$.

Proposition 3.2. Let $M^{7}$ be a compact seven-dimensional manifold. The following conditions are equivalent:
(i) $M^{7}$ admits a topological $S U(2)$-structure;
(ii) $M^{7}$ admits a topological $S U(3)$-structure;
(iii) $M^{7}$ admits a topological $G_{2}$-structure;
(iv) $M^{7}$ admits a topological Spin(7)-structure;
(v) the first and the second Stiefel-Whitney class of $M^{7}$ vanish, i.e. $\omega_{1}=0$ and $\omega_{2}=0$.

Proof. Implications (i) $\Rightarrow$ (ii) $\Rightarrow$ (iii) $\Rightarrow$ (iv) and the equivalence (iv) $\Leftrightarrow$ (v) are obvious. It remains to show that the existence of a topological $\operatorname{Spin}(7)$-siructure implies the existence of a topological $S U(2)$-structure. Let $S$ be the real spinor bundle associated to the given $\operatorname{Spin}(7)$-structure. Its dimension equals 8 , the dimension of $M^{7}$ equals 7 . Thus, there exists a section $\psi$ of length one in $\Gamma(S)$. On the other hand, any seven-dimensional orientable compact manifold admits two linearly independent vector fields [26]. Denote these vector fields by $X$ and $Y$. Then $\psi, X \psi$ and $Y \psi$ are spinor fields, which are ineariy independent in any point of $M^{7}$. Thus $M^{7}$ admits a triple ( $\psi_{1}, \psi_{2}, \psi_{3}$ ) of spinor fields which are orthogonal in any point. The spinors $\psi_{i}(i=1,2,3)$ are maps $\psi_{i}: P_{\text {Spin }} \longrightarrow \Delta_{7}$ satisfying $\psi_{i}(p g)=$ $g^{-1} \psi_{i}(p)$ for all $g \in \operatorname{Spin}(7)$. Now we can define a $S U(2)$-structure on $M^{7}$ by

$$
\begin{gathered}
P_{S U(2)}:=\left\{p \in P_{S p i n} \mid \psi_{1}(p)={ }^{t}(1,0, \ldots, 0), \psi_{2}(p)={ }^{t}(0,1,0, \ldots, 0),\right. \\
\left.\psi_{3}(p)={ }^{t}(0,0,1,0, \ldots, 0)\right\} .
\end{gathered}
$$

Obviously the above-mentioned map from the set of $G_{2}$-reductions of $R\left(M^{7}\right)$ into the set of 3-forms is injective. Thus we obtain:

Proposition 3.3. There is a one-to-one correspondence between the $G_{2}$-stuctures on $M^{7}$ and the sections of $\Lambda_{+}^{3}\left(M^{7}\right)$.

Similarly we have:
Proposition 3.4. There is a one-to-one correspondence between the $G_{2}$-stuctures on $M^{7}$ and the 4-tupels $\left(O, g, P_{\text {Spin }}, \psi\right)$, where $O$ is an orientation, $g$ a metric, $P_{S p i n}$ a spin structure and $\psi$ a spinor field of length one on $M^{7}$.

Now we turn to geometrical $G_{2}$-stuctures.
Definition 3.5. Let $P_{G_{2}} \subset R\left(M^{7}\right)$ be a $G_{2}$-reduction and $g$ the associated Riemannian metric. We denote by $\nabla$ the Levi-Civita connection of $g, P_{G_{2}}$ is said to be geometrical if one of the following equivalent conditions is satisfied:
(i) $\nabla$ reduces to $P_{G_{2}}$;
(ii) the holonomy group $\operatorname{Hol}\left(M^{7}, g\right)$ of $M^{7}$ is contained in $G_{2}$;
(iii) the associated 3 -form $\omega^{3}$ is parallel, i.c. $\nabla \omega^{3}=0$;
(iv) the associated spinor field $\psi$ is parallel, i.e. $\nabla \psi=0$ where, here $\nabla$ is the induced covariant derivative on the spinor bundle $S$.

An immediate consequence is the following fact proved by Bonan in 1966 (see [5]).
Proposition 3.6. If $g$ is the Riemannian metric of a geometrical $G_{2}$-structure on $M^{7}$, then $\left(M^{7}, g\right)$ is Ricci-flat, i.e. Ric $=0$.

Proof. Let $\psi$ be the associated section of the spinor bundle $S$ of $M^{7}$. Because of $\nabla \psi=0$ we obtain for the curvature tensor $\mathbb{R}^{S}$ of the induced connection $\nabla$ on $S$

$$
\mathfrak{H}^{S}(X, Y) \psi=\nabla_{X} \nabla_{Y} \psi-\nabla_{Y} \nabla_{X} \psi-\nabla_{[X, Y]} \psi=0
$$

for all vector fields $X, Y$ on $M^{7}$. We recall that the Ricci tensor on $M^{7}$ satisfies

$$
\left.\operatorname{Ric}(X) \varphi=-2 \sum_{k=1}^{7} s_{k} \mathscr{R}^{S_{(X,}} s_{k}\right) \varphi
$$

for any vector field $X$ and any spinor $\varphi$ on $M^{7}$, where $s_{1}, \ldots, s_{7}$ is a local orthonormal frame (see [2]). Consequently, $\operatorname{Ric}(X) \psi=0$ for all vector fields $X$ and the assertion follows since $\psi$ vanishes nowhere.

Now we can generalize the condition $\nabla \psi=0$ and obtain the notion of a nearly parallel $G_{2}$-structure.

Definition 3.7. A topological $G_{2}$-structure on $M^{7}$ is said to be nearly parallel if the associated spinor $\psi$ is a Killing spinor, i.e. there exists a real number $\lambda$ such that $\psi$ satisfies the differential equation $\nabla_{X} \psi=\lambda X \psi$ with respect to the Levi-Civita connection of the induced metric.

Differentiating the cquation that defines the (2,1)-tensor $A$ we obtain the following equivalent condition.

Proposition 3.8. A topological $G_{2}$-structure on $M^{7}$ is nearly parallel if and only if the associated tensor A satisfies

$$
\begin{equation*}
\left(\nabla_{Z} A\right)(Y, X)=2 \lambda\{g(Y, Z) X-g(X, Z) Y+A(Z, A(Y, X))\} \tag{5}
\end{equation*}
$$

with respect to the Levi-Civita connection of the induced metric where $\lambda$ is the same number as in Definition 3.7.

Now we translate this condition into a differential equation for the 3 -form $\omega^{3}$.
Proposition 3.9. A topological $G_{2}$-structure on $M^{7}$ is nearly parallel if and only if the associated 3 -form $\omega^{3}$ satisfies

$$
\nabla_{Z} \omega^{3}=-2 \lambda\left(Z \_* \omega^{3}\right)
$$

with respect to the Levi-Civita connection of the induced metric where $\lambda$ is the same number as in Definition 3.7.

Proof. The 3-form $\omega^{3}$ is defined by $\omega^{3}(X, Y, Z)=g(X, A(Y, Z))$. Differentiating this equation we observe that Eq . (5) is equivalent to

$$
\left(\nabla_{Z} \omega^{3}\right)(W, Y, X)=2 \lambda g(Z, g(W, X) Y-g(W, Y) X-A(W, A(Y, X)))
$$

for any vector field $Z$. For fixed $Z$ the 3-form on the right-hand side of this equation equals locally

$$
\begin{aligned}
2 \lambda & \sum_{i<j<k} g\left(Z, g\left(s_{i}, s_{k}\right) s_{j}-g\left(s_{i}, s_{j}\right) e_{k}-A\left(s_{i}, A\left(s_{j}, s_{k}\right)\right)\right) s_{i} \wedge s_{j} \wedge s_{k} \\
& =-2 \lambda \sum_{i<j<k} g\left(Z, A\left(s_{i}, A\left(s_{j}, s_{k}\right)\right)\right) s_{i} \wedge s_{j} \wedge s_{k}
\end{aligned}
$$

where $s_{1}, \ldots, s_{7}$ is a section of the $G_{2}$-structure on $M^{7}$. However, we obtain from

$$
\begin{aligned}
\omega^{3}= & s_{1} \wedge s_{2} \wedge s_{7}+s_{1} \wedge s_{3} \wedge s_{5}-s_{1} \wedge s_{4} \wedge s_{6} \\
& -s_{2} \wedge s_{3} \wedge s_{6}-s_{2} \wedge s_{4} \wedge s_{5}+s_{3} \wedge s_{4} \wedge s_{7}+s_{5} \wedge s_{6} \wedge s_{7}
\end{aligned}
$$

on the one hand all $A\left(s_{i}, A\left(s_{j}, s_{k}\right)\right)$, and on the other hand $* \omega^{3}$. The assertion follows by comparing these terms.

In the same way as in the case of geometrical $G_{2}$-structures we prove:

Proposition 3.10. If $g$ is the Riemannian metric of a nearly parallel $G_{2}$-structure on $M^{7}$, then $\left(M^{7}, g\right)$ is an Einstein space.

Proof. The induced spinor $\psi$ is a Killing spinor and we obtain from $\nabla_{X} \psi=\lambda X \cdot \psi$

$$
\mathfrak{R}^{S}(X, Y) \psi=\nabla_{X} \nabla_{Y} \psi-\nabla_{Y} \nabla_{X} \psi-\nabla_{[X, Y]} \psi=2 \lambda^{2}(Y \cdot X+g(X, Y)) \cdot \psi
$$

This yields for the Ricci tensor

$$
\operatorname{Ric}(X) \psi=-2 \sum_{k=1}^{7} s_{k} \Re^{S}\left(X, s_{k}\right) \psi=-4 \lambda^{2} \sum_{k=1}^{7} s_{k}\left(s_{k} X+g\left(X, s_{k}\right)\right) \psi=24 \lambda^{2} X \psi
$$

Since $\psi$ has no zeros, $\operatorname{Ric}(X)=24 \lambda^{2} X$ and, therefore, $\left(M^{7}, g\right)$ is an Einstein space of constant scalar curvature $R=7 \cdot 24 \lambda^{2}$.

Next we generalize the following result of Gray and Fernandez.
Proposition $3.11[9,20,21]$. Let $P_{G_{2}} \subset R\left(M^{7}\right)$ be a topological $G_{2}$-reduction, $g$ its induced metric, $\omega^{3}$ the induced 3 -form and $*$ the Hodge operator. Then the following conditions are equivalent:
(i) $P_{G_{2}}$ is geometrical;
(ii) $\nabla \omega^{3}=0$;
(iii) $\mathrm{d} \omega^{3}=0, \mathrm{~d} * \omega^{3}=0$.

We transfer the proof of this proposition given in [9] to the case of nearly parallel $G_{2^{-}}$ reductions and obtain:

Proposition 3.12. Let $P_{G_{2}} \subset R\left(M^{7}\right)$ be a topological $G_{2}$-reduction, $g$ its induced metric, $\omega^{3}$ the induced 3 -form, $\psi$ the induced spinor and $*$ the Hodge operator. Then the following conditions are equivalent:
(i) $P_{G_{2}}$ is nearly parallel, i.e. the spinor $\psi$ satisfies $\nabla_{X} \psi-\lambda X \psi$;
(ii) $\nabla_{Z} \omega^{3}=-2 \lambda\left(Z \hookrightarrow * \omega^{3}\right)$;
(iii) $\delta \omega^{3}=0, \mathrm{~d} \omega^{3}=-8 \lambda * \omega^{3}$.

Proof. The 3-form $\omega^{3}$ defines the metric $g$. Let $\Sigma_{g} \subset \Lambda_{+}^{3}\left(M^{7}\right)$ be the set of 3-forms that define this metric also. The fibre of $\Sigma_{g}$ equals the $S O(7)$-orbit of $\omega^{3}$, i.e. $S O(7) / G_{2}$. Its tangent space $T\left(S O(7) / G_{2}\right)$ is $G_{2}$-invariant and seven-dimensional, therefore $T\left(S O(7) / G_{2}\right)=$ $S_{\omega^{3}}:=\left\{X, * \omega^{3} \mid X \in T M^{7}\right\}$. Since $\omega^{3}$ is a section in $\Sigma_{g}$ and $\nabla$ is a covariant derivative in $\Sigma_{g}$, the covariant derivative $\nabla \omega^{3}$ is a section of $T^{*} M^{7} \otimes S_{\omega^{3}}$. We consider now the projection $p_{1}$ defined by

$$
p_{1}: T^{*} M^{7} \otimes S_{\omega^{3}} \ni \alpha^{1} \otimes \alpha^{3} \longmapsto \alpha^{1} \wedge \alpha^{3} \in \Lambda^{4}
$$

and the contraction

$$
p_{2}: T^{*} M^{7} \otimes S_{\omega^{3}} \longrightarrow \Lambda^{2}
$$

By comparing the decomposition of $T^{*} M^{7} \otimes S_{\omega^{3}}$ and $\Lambda^{4} \oplus \Lambda^{2}$ into irreducible $G_{2}$-subspaces we see that the sum of $p_{1}$ and $p_{2}$

$$
p_{1} \oplus p_{2}: T^{*} M^{7} \otimes S_{\omega^{3}} \longrightarrow \Lambda^{4} \oplus \Lambda^{2}
$$

is injective. Consequently, $\nabla_{X} \psi=\lambda X \psi$ is equivalent to

$$
\begin{aligned}
& p_{1}\left(\nabla(\omega)^{3}\right)=-2 \lambda p_{1}\left(\cdot, *\left(\omega^{3}\right)=-2 \lambda \sum_{i=1}^{7} s_{i} \wedge s_{i}-*()^{3}=-8 \lambda *()^{3},\right. \\
& p_{2}\left(\nabla \omega^{3}\right)=-2 \lambda p_{2}\left(\cdot \omega * \omega^{3}\right)=-2 \lambda \sum_{i=1}^{7} * \omega^{3}\left(s_{i}, s_{i}, \ldots\right)=0 .
\end{aligned}
$$

The assertion now follows from $p_{1}\left(\nabla \omega^{3}\right)=\mathrm{d} \omega^{3}, p_{2}\left(\nabla \omega^{3}\right)=\delta \omega^{3}$.
Remark 3.13. There is the following difference between the cases $\lambda=0$ and $\lambda \neq 0$ : we proved that a $G_{2}$-structure is nearly parallel if and only if for the induced 3-form $\omega^{3}$ the equations $\delta \omega^{3}=0, \mathrm{~d} \omega^{3}=-8 \lambda * \omega^{3}$ hold. In case $\lambda=0$, the resulting equations $\mathrm{d} \omega^{3}=0$ and $\delta \omega^{3}=0$ are independent. In case $\lambda \neq 0$, the condition $\mathrm{d} \omega^{3}=-8 \lambda * \omega^{3}$ implies $\delta \omega^{3}=0$.

## 4. Nearly parallel $G_{2}$-structures, Killing spinors and contact geometry

We summarize now several results on nearly parallel $G_{2}$-structures. A general reference is the book [2]. In particular, we derive necessary geometric conditions for the underlying Ricmannian metric and we introduce threc types of nearly parallel $G_{2}$-structures depending on the number of Killing spinors. Finally we discuss the compact examples of each type known up to now.

Let $\left(M^{7}, g\right)$ be a compact Riemannian spin manifold with a Killing spinor $\psi$,

$$
\nabla_{X} \psi=\lambda X \cdot \psi
$$

and denote by $\omega^{3}$ the corresponding 3-form satisfying the differential equation

$$
\mathrm{d} \omega^{3}=-8 \lambda * \omega^{3}
$$

Then $M^{7}$ is an Einstein manifold of positive scalar curvature $R=4 \cdot 7 \cdot 6 \cdot \lambda^{2}=168 \lambda^{2}$ and, consequently, the fundamental group $\pi_{1}(M)$ is finite. In case $\lambda \neq 0$ the Riemannian manifold ( $M^{7}, g$ ) is locally irreducible and not locally symmetric except if it has constant sectional curvature (see [2]). Using the associated nearly parallel $G_{2}$-structure we decompose the bundles of forms $\Lambda^{p}\left(M^{7}\right)$ into the irreducible components mentioned above. The curvature tensor

$$
\Re: \Lambda^{2}=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2} \longrightarrow \Lambda_{7}^{2} \oplus \Lambda_{14}^{2}=\Lambda^{2}
$$

splits into the scalar curvature and the Weyl tensor $W$ :

$$
\Re=W-\frac{1}{42} R .
$$

The Weyl tensor satisfies several algebraic equations. They can be formulated in the following way. For any 2 -form $\omega^{2} \in \Lambda^{2}$ the Clifford product $W\left(\omega^{2}\right) \cdot \psi$ vanishes, i.e.

$$
W\left(\omega^{2}\right) \cdot \psi=0
$$

holds (see [2]). Since $\Lambda_{14}^{2}$ is the Lie algebra of the group $G_{2}$, being the isotropy group of the spinor $\psi$, we conclude that the Weyl tensor has the form

$$
W=\left(\begin{array}{cc}
0 & 0 \\
0 & W_{14}
\end{array}\right)
$$

where $W_{14}: \Lambda_{14}^{2} \longrightarrow \Lambda_{14}^{2}$ is a symmetric endomorphism. In case $W_{14} \neq 0$, the holonomy representation $\mathrm{Hol}^{0} \longrightarrow S O(7)$ is irreducible and we can apply Berger's Holonomy Theorem. Since $\operatorname{dim}\left(M^{7}\right)=7$, there are two possibilities: $\mathrm{Hol}^{0}=G_{2}$ or $\mathrm{Hol}^{0}=S O(7)$. The case of $\mathrm{Hol}^{0}=G_{2}$ cannot occur since $M^{7}$ is an Einstein space with positive scalar curvature $(\lambda \neq 0)$. Consequently, the Riemannian manifold $M^{7}$ is - at least from the point of vicw of holonomy theory - of general type: $\mathrm{Hol}^{0}=S O(7)$. Since the fundamental group of $M^{7}$ is finite we can without loss of generality assume that $M^{7}$ is simply connected, $\pi_{1}\left(M^{7}\right)=0$. Furthermore, we exclude the case of the space of constant curvature, i.e. $M^{7} \neq S^{7}$. Denote by $K S\left(M^{7}, g\right)$ the space of all Killing spinors,

$$
K S\left(M^{7}, g\right)=\left\{\psi \in \Gamma(S): \nabla_{X} \psi=\lambda X \cdot \psi \text { for all vectors } X \in T\left(M^{7}\right)\right\}
$$

The dimension of $K S\left(M^{7}, g\right)$ is bounded by three, $\operatorname{dim}\left[K S\left(M^{7}, g\right)\right] \leq 3$ (see [2]). The nearly parallel $G_{2}$-structures split into three different types:
nearly parallel $G_{2}$-structures of type $1: \operatorname{dim}[K S]=1$ (proper $G_{2}$-structures),
nearly parallel $G_{2}$-structures of type $2: \operatorname{dim}[K S]=2$,
nearly parallel $G_{2}$-structures of type 3 : $\operatorname{dim}[K S]=3$.
The nearly parallel $G_{2}$-structures of type 2 and 3 are described using the language of contact geometry. In fact, Th. Friedrich and I. Kath observed that a simply connected sevendimensional Riemannian spin manifold with scalar curvature $R=42$ admits at least

$$
\begin{aligned}
& \text { two Killing spinors } \Longleftrightarrow M^{7} \text { is an Einstein-Sasakian manifold, } \\
& \text { three Killing spinors } \Longleftrightarrow M^{7} \text { is a 3-Sasakian manifold }
\end{aligned}
$$

(see [16]; for the definition of a Sasakian manifold also see next section). For the $G_{2}$ structures of type 1 we also use the notion of a proper $G_{2}$-structure.

Examples of nearly parallel $G_{2}$-structures of type 3 (i.e. 3-Sasakian manifolds) are known (see Table 1). We have the sphere $S^{7}$, the space $N(1,1)=S U(3) / S^{1}$ and these are the only regular 3-Sasakian manifolds in dimension seven (see [16]). In the past Boyer et al. obtained non-regular examples $S\left(p_{1}, p_{2}, p_{3}\right)$ (see [6,7]). Up to now, strong topological conditions for a compact seven-dimensional manifold $M^{7}$ in order to admit a 3-Sasakian structure are not known. For example, it seems to be an open question whether the manifold $S^{2} \times S^{5}$ posseses such a structure or not! This special question is interesting since a seven-dimensional

Table 1
Examples of nearly parallel $G_{2}$-structures of type 3 (3-Sasakian manifolds)

| $M^{7}$ | $\operatorname{Iso}_{0}\left(M^{7}\right)$ | $\operatorname{dim}[\mathrm{Iso}]$ |
| :--- | :--- | ---: |
| $N(1,1)$ | $S U(3) \times S U(2)$ | 11 |
| $S\left(p_{1}, p_{2}, p_{3}\right)$ | depends on $p_{i}$ | $<8$ |

Table 2
Examples of nearly parallel $G_{2}$-structures of type 2 (Einstein-Sasakian manifolds)

| $X^{6}$ | $M^{7}$ | $\mathrm{Iso}_{\rho}\left(M^{7}\right)$ | $\operatorname{dim}[\mathrm{Iso}]$ |
| :--- | :--- | :--- | :---: |
| $F(1,2)$ | $N(1,1)$ | $S U(3) \times S U(2)$ | 11 |
| $S^{2} \times S^{2} \times S^{2}$ | $Q(1,1,1)$ | $S U(2) \times S U(2) \times S U(2) \times U(1)$ | 10 |
| $\mathbb{C P}^{2} \times S^{2}$ | $M(3,2)$ | $S U(3) \times S U(2) \times U(1)$ | 12 |
| $G 5,2$ | $V_{5,2}$ | $S O(5) \times U(1)$ | 11 |
| $P_{k} \times S^{2}$ | $M_{k}^{7}(3 \leq k \leq 8)$ | $S O(3) \times U(1)$ | 4 |

manifold with 3-Sasakian structure and being the product of two lower-dimensional manifolds must be diffeomorphic to $S^{2} \times S^{5}$.

Nearly parallel $G_{2}$-structures of type 2 (i.e. Einstein-Sasakian manifolds) can be obtained as principal $S^{1}$-bundles over six-dimensional Kähler-Einstein manifolds with positive scalar curvature. Indeed, let $X^{6}$ be a Kähler-Einstein manifold with positive scalar curvature and denote by $c_{1}\left(X^{6}\right)$ its first Chern class. Let $A>0$ be the largest integer such that $c_{1}\left(X^{6}\right) / A$ is an integral cohomology class. Consider the principal $S^{1}$-bundle $S^{1} \longrightarrow M^{7} \longrightarrow X^{6}$ with Chern class $c_{1}^{*}=c_{1}\left(X^{6}\right) / A$. Then $M^{7}$ is simply connected and admits an Einstein-Sasakian structure. Using the described construction we obtain the regular Einstein-Sasakian manifolds presented in Table 2, where $P_{k}(3 \leq k \leq 8)$ denotes one of the del Pezzo surfaces with a Kähler-Einstein metric of positive scalar curvature. The spaces $N(1,1), Q(1,1,1), M(3,2)$ and the Stiefel manifold $V_{5,2}$ are homogeneous spaces together with some invariani Einstein metric. Table 2 contains also the isometry group of the Einstein-Sasakian manifold $M^{7}$ as well as its dimension (see [11]).

There are three examples of nearly parallel $G_{2}$-structures of type 1, i.e. proper $G_{2^{-}}$ structures (see Table 3). The first example is the so-called squashed 7 -sphere. Indeed, the standard sphere ( $S^{7}, g_{\text {can }}$ ) is a Riemannian submersion over the projective space $H \mathrm{P}^{1}$ with fibre $S^{3}$. Scaling the canonical metric in the fibre $S^{3}$, there exists a second scaling factor such that the metric $g_{1}$ on $S^{7}$ is an Einstein metric. It turns out that ( $S^{7}, g_{1}$ ) admits exactly one Killing spinor. The second example is the homogeneous space $N(k, l)=S U(3) / S_{k, l}^{1}$ where the embedding of the group $S^{1}=U(1)$ into $S U(3)$ is given by

$$
S^{1} \ni z \longmapsto \operatorname{diag}\left(z^{k}, z^{l}, z^{-(k+l)}\right) \in S U(3)
$$

These spaces have two homogeneous Einstein metrics. In case $(k, l)=(1,1)$ one of these Einstein metrics is the 3-Sasakian structure mentioned above and the second Einstein metric admits one Killing spinor. In case $(k, l) \neq(1,1)$, there exists only one Killing spinor for

Table 3
Examples of nearly parallel $G_{2}$-structures of type 1

| $M^{7}$ | Iso $_{\theta}\left(M^{7}\right)$ | $\operatorname{dim}[\mathrm{Iso}]$ |
| :--- | :--- | :---: |
| $\left(S^{7}, g_{\text {squas }}\right)$ | $S p(2) \times \operatorname{Sp(1)}$ | 13 |
| $N(k . l) .(k, l) \neq(1.1)$ | $S U(3) \times U(1)$ | 9 |
| $S O(5) / S O(3)$ | $S O(5)$ | 10 |

each of these two metrics, i.e. the nearly parallel $G_{2}$-structure is of type 1 (a proper $G_{2^{-}}$ structure). The third example is a special Riemannian metric on $S O(5) / S O(3)$ with one Killing spinor (see [8]). The isotropy representation of this space is the unique sevendimensional irreducible representation of the group $S O$ (3) $\longrightarrow G_{2} \subset S O(7)$.

Remark 4.1. As we mentioned before, strong topological obstructions for the existence of a 3-Sasakian metric on a compact seven-dimensional spin manifold are not known (very recently, the obstruction $b_{3}\left(M^{7}\right)=0$ was found, see [17]). The same situation happens in case of an Einstein-Sasakian metric with positive scalar curvature. This gives rise to the following question:

Do there exist compact, simply connected spin manifolds $M^{7}$ with a nearly parallel $G_{2^{-}}$ structure of type 1 (resp. 2) which cannot admit - for example for topological reasons - any Einstein-Sasakian (resp. 3-Sasakian) metric at all?

## 5. New examples

In this section we construct new examples of nearly parallel $G_{2}$-structures and show that they are of type 1, i.e. they are proper $G_{2}$-structures. Let us recall the definition of a Sasakian structure.

Definition 5.1. A vector field $V$ on a Riemannian manifold ( $M, g$ ) is called a Sasakian structure if the following conditions are satisfied:
(1) $V$ is a Killing vector field of unit length;
(2) the (1,1)-tensor $\varphi$ defined by $\varphi=-\nabla V$ is an almost complex structure on the distribution orthogonal to $V\left(\varphi^{2}=-1\right.$ and $\varphi=-\varphi^{*}$ on $\left.V^{\perp}\right)$;
(3) $\left(\nabla_{X} \varphi\right) Y=g(X, Y) V-g(V, Y) X$ for all vectors $X, Y$.

Definition 5.2. A triple ( $V_{1}, V_{2}, V_{3}$ ) is called a 3-Sasakian structure on $M$ if the following conditions are satisfied:
(1) the vector $V_{i}$ defines a Sasakian structure for each $i=1,2,3$;
(2) the frame ( $V_{1}, V_{2}, V_{3}$ ) is orthonormal;
(3) for each permutation $(i, j, k)$ of signature $\delta$, we have $\nabla_{V_{i}} V_{j}=(-1)^{\delta} V_{k}$;
(4) on the distribution orthogonal to ( $V_{1}, V_{2}, V_{3}$ ), the tensors $\varphi_{i}=-\nabla V_{l}$ satisfy $\varphi_{i} \varphi_{j}=$ $(-1)^{\delta} \varphi_{k}$.

Consider a Riemannian manifold $M^{7}$ of dimension seven, admitting a 3-Sasakian structure. A vector is called horizontal if it is orthogonal to each $V_{i}$ and vertical if it is a linear combination of $V_{i}$. Define, for $s>0$, the metric $g^{s}$ on $M^{7}$ by $g^{s}(X, Y)=g(X, Y)$ if $X$ (or $Y$ ) is horizontal, and $g^{s}(V, W)=s^{2} g(V, W)$ for vertical $V, W$.

A straightforward computation gives the following:
Lemma 5.3. The manifold $\left(M^{7}, g^{s}\right)$ is Einstein if and only if $s=1$ or $s=1 / \sqrt{5}$.
The 3-Sasakian manifold ( $M^{7}, g^{1}$ ) admits, by definition, a nearly parallel $G_{2}$-structure of type 3. On the other hand, by Proposition 3.10, every nearly parallel $G_{2}$-structure on $M$ defines an Einstein metric. Hence, the manifold ( $M^{7}, g^{s}$ ) with $s=1 / \sqrt{5}$ is a natural candidate for a nearly parallel $G_{2}$-structure. Indeed, we have:

Theorem 5.4. The manifold $\left(M^{7}, g^{s}\right)$ admits a nearly parallel $G_{2}$-structure for $s=1 / \sqrt{5}$.
Proof. Fix $s>0$ and a local orthonormal frame $X_{1}, \ldots, X_{4}$ of the horizontal distribution. Let $Z_{a}(a=1,2,3)$ be the vector $Z_{a}:=V_{a} / s$ and denote by $\nabla$ the Levi-Civita connection of the metric $g=g^{1}$. We define a 3-form $\omega$ by

$$
\omega:=F_{1}+F_{2}
$$

where $F_{1}:=Z_{1} \wedge Z_{2} \wedge Z_{3}, F_{2}:=\sum_{a} Z_{a} \wedge \omega_{a}$ and $\omega_{a}:=\frac{1}{2} \sum_{i} X_{i} \wedge \nabla_{X_{i}} V_{a}$.
The 3 -form $\omega$ is clearly in $\Lambda_{+}^{3}\left(M^{7}\right)$. Denote by $*$ the Hodge operator with respect to the metric $g^{s}$. Then we calculate the forms $* F_{1}$ and $* F_{2}$ :

$$
6 * F_{1}=\sum_{a} \omega_{a} \wedge \omega_{a}, \quad * F_{2}=Z_{1} \wedge Z_{2} \wedge \omega_{3}+Z_{2} \wedge Z_{3} \wedge \omega_{1}+Z_{3} \wedge Z_{1} \wedge \omega_{2}
$$

A straightforward computation yields the formulas

$$
\begin{array}{ll}
\mathrm{d} Z_{1}=2 s \omega_{1}-(2 / s) Z_{2} \wedge Z_{3}, & \mathrm{~d} Z_{2}=2 s \omega_{2}-(2 / s) Z_{3} \wedge Z_{1} \\
\mathrm{~d} Z_{3}=2 s \omega_{3}-(2 / s) Z_{1} \wedge Z_{2}, & \mathrm{~d} F_{1}=\mathrm{d}\left(Z_{1} \wedge Z_{2} \wedge Z_{3}\right)=2 s\left(* F_{2}\right)
\end{array}
$$

Now we compute

$$
\begin{aligned}
\mathrm{d} \omega_{1} & =\mathrm{d}\left((1 / 2 s) \mathrm{d} Z_{1}+\left(1 / s^{2}\right) Z_{2} \wedge Z_{3}\right) \\
& =\left(1 / s^{2}\right)\left(\mathrm{d} Z_{2} \wedge Z_{3}-Z_{2} \wedge \mathrm{~d} Z_{3}\right) \\
& =(2 / s)\left(\omega_{2} \wedge Z_{3}-\omega_{3} \wedge Z_{2}\right) \\
\mathrm{d} \omega_{2} & =(2 / s)\left(\omega_{3} \wedge Z_{1}-\omega_{1} \wedge Z_{3}\right), \quad \mathrm{d} \omega_{3}=(2 / s)\left(\omega_{1} \wedge Z_{2}-\omega_{2} \wedge Z_{1}\right) \\
\mathrm{d} F_{2} & =\sum_{a} \mathrm{~d} Z_{a} \wedge \omega_{a}-\sum_{a} Z_{a} \wedge \mathrm{~d} \omega_{a}=12 s\left(* F_{1}\right)+(2 / s)\left(* F_{2}\right)
\end{aligned}
$$

Finally we obtain $\mathrm{d} \omega=\mathrm{d}\left(F_{1}+F_{2}\right)=12 s\left(* F_{1}\right)+(2 s+(2 / s))\left(* F_{2}\right)$. So $\mathrm{d} \omega$ is a scalar multiple of $* \omega$ if and only if $12 s=2 s+2 / s$.

As remarked in Scction 4, the only known examples of proper nearly parallel $G_{2}{ }^{-}$ structures - up to now - are the squashed 7 -sphere, the Wallach spaces $N(k, l)$ and an

Einstein metric on $S O(5) / S O(3)$ related to the irreducible representation $S O(3) \rightarrow G_{2} \rightarrow$ $S O(7)$. The importance of Theorem 5.4 can thus be seen in the light of the following result:

Theorem 5.5. The nearly parallel $G_{2}$-structures constructed in Theorem 5.4 are proper.
Proof. Suppose that a constant multiple $k$ of the metric $g^{s}$ on $M^{7}$ admits an EinsteinSasakian structure given by the Killing vector field $\xi$. Denote by 97 the curvature tensor of ( $M^{7}, g$ ) and by $: \mathrm{I}^{0}$ the curvature tensor of $\left(M^{7}, \mathrm{~kg}^{s}\right)$. Then we obtain from Lemma 4 of [2, p. 78]:

$$
\begin{equation*}
g^{s}\left(\Re^{0}(X, Y) \xi, V_{a}\right)=k\left[g^{s}(Y, \xi) g^{s}\left(X, V_{a}\right)-g^{s}(X, \xi) g^{s}\left(Y, V_{a}\right)\right] . \tag{*}
\end{equation*}
$$

Choosing $X$ and $Y$ horizontal we obtain

$$
g^{s}\left(\because i^{0}(X, Y) \xi, V_{a}\right)=0
$$

On the other hand, comparing the Levi-Civita connection $\nabla$ of the metric $g$ with the LeviCivita connection $\nabla^{0}$ of the metric $g^{s}$ we calculate

$$
\mathfrak{R}^{0}(X, Y) V_{a}=s^{2} M(X, Y) V_{a}+\left(s^{2}-1\right) \nabla_{\mid X, Y]^{V}} V_{a}=\left(s^{2}-1\right) V_{[X, Y]^{\vee}} V_{a}
$$

Here we apply the same lemma for $V_{a}$ as Sasakian structure on ( $M^{7}, g$ ). Consequently, $\xi$ is perpendicular to all vectors of the form $\nabla_{[X . Y]^{V}} V_{a}$. It is easy to see that the set of all these vectors is just the vertical distribution, so $\xi$ is horizontal.

Next, taking $X=V_{1}, a=2$ and $Y$ horizontal in Eq. (*), one obtains

$$
\begin{equation*}
g^{s}\left(\Re^{0}\left(V_{1}, Y\right) \xi, V_{2}\right)=0 \tag{**}
\end{equation*}
$$

The vector $\left[Y, V_{1}\right]$ is a horizontal one and we can calculate

$$
\begin{aligned}
\mathfrak{H}^{0}\left(V_{1}, Y\right) V_{2} & =\nabla_{V_{1}}^{0} \nabla_{Y}^{0} V_{2}-\nabla_{Y}^{0} \nabla_{V_{4}}^{0} V_{2}-\nabla_{V_{1}, Y 1}^{0} V_{2} \\
& =s^{2}\left(\nabla_{V_{1}}^{0} \nabla_{Y} V_{2}-\nabla_{V_{1}} \nabla_{Y} V_{2}\right)+s^{2} \mathfrak{M}\left(V_{1}, Y\right) V_{2} \\
& =s^{2}\left(\nabla_{V_{1}}^{0} \nabla_{Y} V_{2}-\nabla_{V_{1}} \nabla_{Y} V_{2}\right)
\end{aligned}
$$

by similar arguments. Now $\nabla_{Y} V_{2}$ runs through all horizontal vector fields when $Y$ is horizontal. Together with $(* *)$ we obtain that $\xi$ is perpendicular to all vectors of the form $\nabla_{V_{1}}^{0} Z-\nabla_{V_{1}} Z$. The relation

$$
\nabla_{V_{1}}^{0} Z-\nabla_{V_{1}} Z=\left(\nabla_{V_{1}}^{0} Z-\left[Z, V_{1}\right]\right)-\left(\nabla_{V_{1}} Z-\left[Z . V_{1}\right]\right)=\left(s^{2}-1\right) \nabla_{Z} V_{1}
$$

shows that $\xi$ is also perpendicular to all horizontal vectors, a contradiction.
Our new examples of nearly parallel $G_{2}$-structures are all proper. The recent work of Boyer et al. $[71$ provides a multitude of new examples of strongly inhomogeneous 7 manifolds admitting a 3-Sasakian structure. By our previous theorems, they generate the first examples of strongly inhomogeneous proper nearly parallel $G_{2}$-structures. However, these examples arise from a deformation of the 3-Sasakian structure and therefore they live on manifolds with 3-Sasakian metric.

As K. Galicki pointed out to us, he also proved the result of Theorem 5.4 in a joint paper with S. Salamon (in preparation).

## 6. The automorphism group of a nearly parallel $G_{2}$-structure

We consider a compact, seven-dimensional manifold $M^{7}$ with a nearly parallel $G_{2^{-}}$ structure and denote by $\omega^{3}$ its 3 -form. Then we have the differential equations

$$
\nabla_{X} \omega^{3}=-2 \lambda\left(X-* \omega^{3}\right), \mathrm{d} \omega^{3}=-8 \lambda * \omega^{3}, \lambda \neq 0
$$

Let $X$ be a vector field preserving the 3 -form, i.e.

$$
L_{X} \omega^{3}=\mathrm{d}\left(X-\omega^{3}\right)+X-\mathrm{d} \omega^{3}=\mathrm{d}\left(X-\omega^{3}\right)-8 \lambda\left(X-* \omega^{3}\right)=0 .
$$

In particular, $X$ is a Killing vector field of the Riemannian metric $g$ and $\nabla X \in \Gamma(T \otimes T)$ is anti-symmetric and coincides - up to a multiple - with the exterior derivative of the 1 -form $X$ :

$$
\nabla X=\frac{1}{2} \mathrm{~d} X
$$

We now calculate the form $\mathrm{d}\left(X-\omega^{3}\right)$ using the differential equation for $\omega^{3}$ :

$$
\begin{aligned}
\mathrm{d}\left(X-\omega^{3}\right)(\alpha, \beta, \gamma)= & \left(\nabla_{\alpha} \omega^{3}\right)(X, \beta, \gamma)-\left(\nabla_{\beta} \omega^{3}\right)(X, \alpha, \gamma)+\left(\nabla_{\gamma} \omega^{3}\right)(X, \alpha, \beta) \\
& +\omega^{3}\left(\nabla_{\alpha} X, \beta, \gamma\right)-\omega^{3}\left(\nabla_{\beta} X, \alpha, \gamma\right)+\omega^{3}\left(\nabla_{\gamma} X, \alpha, \beta\right) \\
= & 6 \lambda\left(* \omega^{3}\right)(X, \alpha, \beta, \gamma)+\omega^{3}\left(\nabla_{\alpha} X, \beta, \gamma\right) \\
& -\omega^{3}\left(\nabla_{\beta} X ; \alpha, \gamma\right)+\omega^{3}\left(\nabla_{\gamma} X, \alpha, \beta\right)
\end{aligned}
$$

The equation $\mathrm{d}\left(X-\omega^{3}\right)-8 \lambda\left(X-* \omega^{3}\right)=0$ becomes:

$$
\begin{aligned}
& \left.2 \lambda(X\lrcorner * \omega^{3}\right)(\alpha, \beta, \gamma) \\
& \quad=\omega^{3}\left(\nabla_{\alpha} X, \beta, \gamma\right)-\omega^{3}\left(\nabla_{\beta} X, \alpha, \gamma\right)+\omega^{3}\left(\nabla_{\gamma} X, \alpha, \beta\right) \\
& \quad=\frac{1}{2}\left\{\omega^{3}(\alpha-\mathrm{d} X, \beta, \gamma)-\omega^{3}(\beta-\mathrm{d} X, \alpha, \gamma)+\omega^{3}(\gamma-\mathrm{d} X, \alpha, \beta)\right\}
\end{aligned}
$$

We apply now the following easy algebraic observation:
Lemma 6.1. Let $\eta^{2}$ be a 2-form and denote by $\pi_{7}\left(\eta^{2}\right)$ its $\Lambda_{7}^{2}$-component with respect to the decomposition $\Lambda^{2}=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$. Suppose that $\pi_{7}\left(\eta^{2}\right)$ is given by a vector $Z$, i.e. $\pi_{7}\left(\eta^{2}\right)=Z-\omega^{3}$. Then

$$
\begin{aligned}
& \omega^{3}\left(\alpha-\eta^{2}, \beta, \gamma\right)-\omega^{3}\left(\beta-\eta^{2}, \alpha, \gamma\right)+\omega^{3}\left(\gamma-\eta^{2}, \alpha, \beta\right) \\
& \quad=3\left(Z \rightharpoonup * \omega^{3}\right)(\alpha, \beta, \gamma)
\end{aligned}
$$

The condition that the vector field $X$ preserves the 3 -form becomes equivalent to

$$
2 \lambda\left(X \omega * \omega^{3}\right)=\frac{1}{2} \cdot 3\left(Z \omega * \omega^{3}\right)
$$

where $\pi_{7}(\mathrm{~d} X)=Z-\omega^{3}$. This implies $Z=\frac{4}{3} \cdot \lambda \cdot X$ and consequently we have proved:

Theorem 6.2. A Killing vector field $X$ preserves a nearly parallel $G_{2}$-structure $\omega^{3}$ if and only if

$$
\pi_{7}(\mathrm{~d} X)=\frac{4}{3} \cdot \lambda \cdot\left(X \omega \omega^{3}\right) .
$$

We now use Stokes Theorem as well as the identities given in Propositions 2.4 and 2.5 in order to obtain the following relation between the $L^{2}$-norms $|\cdot|$ of $X$ and the $\Lambda_{14}^{2}$-part $\pi_{14}(\mathrm{~d} X)$ of $\mathrm{d} X$ :

Theorem 6.3. Let $X$ be a Killing vector field preserving a nearly parallel $G_{2}$-structure $\omega^{3}$ on a closed manifold $M^{7}$. Then

$$
\frac{128}{3} \lambda^{2}|X|^{2}=\left|\pi_{14}(\mathrm{~d} X)\right|^{2} .
$$

Proof. We start with the algebraic identity $\mathrm{d} X \wedge \mathrm{~d} X \wedge \omega^{3}=2\left|\pi_{7}(\mathrm{~d} X)\right|^{2}-\left|\pi_{14}(\mathrm{~d} X)\right|^{2}$ which is valid for any 2-form $\eta(=\mathrm{d} X)$. By Stokes Theorem and Propositions 2.4 and 2.5 we obtain

$$
\begin{aligned}
\int \mathrm{d} X \wedge \mathrm{~d} X \wedge \omega^{3} & =\int X \wedge \mathrm{~d} X \wedge \mathrm{~d} \omega^{3}=-8 \lambda \int X \wedge \mathrm{~d} X \wedge\left(* \omega^{3}\right) \\
& =-8 \lambda \int X \wedge \pi 7(\mathrm{~d} X) \wedge\left(* \omega^{3}\right) \\
& =-\frac{32}{3} \lambda^{2} \int X \wedge\left(X \ldots \omega^{3}\right) \wedge\left(*\left(\omega^{2}\right)\right. \\
& =-32 \lambda^{2} \int X \wedge(* X)=-32 \lambda^{2}|X|^{2}
\end{aligned}
$$

Therefore we get

$$
2\left|\pi_{7}(\mathrm{~d} X)\right|^{2}-\left|\pi_{14}(\mathrm{~d} X)\right|^{2}=-32 \lambda^{2}|X|^{2} .
$$

Using the equation, $\pi_{7}(\mathrm{~d} X)=\frac{4}{3} \cdot \lambda \cdot\left(X_{\lrcorner} \omega^{3}\right)$, we have

$$
\left|\pi_{7}(\mathrm{~d} X)\right|^{2}=\frac{16}{3} \lambda^{2}|X|^{2},
$$

and the formula follows immediately.
Consider a component $\Sigma \subset M^{7}$ of the zero set of $X$. Since $X$ is a Killing vector field, $\Sigma$ is a totally geodesic submanifold of even codimension. Suppose that $\operatorname{dim}[\Sigma]=5$. Then at any point of $\Sigma$ we obtain that $0 \neq \mathrm{d} X \in \Lambda_{14}^{2}$ has rank $2\left(\pi_{7}(\mathrm{~d} X)=0\right.$ !). This implies $\mathrm{d} X \wedge \mathrm{~d} X=0$. On the other hand, since $\mathrm{d} X \in \Lambda_{14}^{2}$ we have $\mathrm{d} X \wedge \mathrm{~d} X \wedge \omega^{3}=-|\mathrm{d} X|^{2}$ (see the definition of the space $\Lambda_{14}^{2}$ ), a contradiction. This yields:

Corollary 6.4. Any connected component of the zero set of a Killing vector field $X$ preserving a nearly parallel $G_{2}$-structure $\omega^{3}$ has dimension one or three.

We investigate now the geometry of the three-dimensional components of the zero set $\Sigma$.

Theorem 6.5. Let $\Sigma^{3} \subset M^{7}$ be a three-dimensional component of the zero set of a Killing vector field preserving a nearly parallel $G_{2}$-structure. Then
(i) the tangent spaces $T\left(\Sigma^{3}\right) \subset T\left(M^{7}\right)$ are $G_{2}$-special, i.e. the restriction of $\omega^{3}$ to $\Sigma^{3}$ is the volume form of $\Sigma^{3}$;
(ii) $\Sigma^{3}$ is a space form of positive sectional curvature $K=\frac{1}{42} R$.

Proof. The equation $X \rightarrow \mathrm{~d} \omega^{3}+\mathrm{d}\left(X \omega \omega^{3}\right)=0$ yields at any point $m \in \Sigma^{3}$ and for any three vectors $\alpha, \beta, \gamma \in T_{m}\left(M^{7}\right)$ the relation

$$
0=\mathrm{d}\left(X-\omega^{3}\right)(\alpha, \beta, \gamma)=\omega^{3}\left(\nabla_{\alpha} X, \beta, \gamma\right)-\omega^{3}\left(\nabla_{\beta} X, \alpha, \gamma\right)+\omega^{3}\left(\nabla_{\gamma} X, \alpha, \beta\right)
$$

Let $e_{1}, e_{2}, \ldots, e_{7}$ be a local orthonormal frame in the $G_{2}$-bundle such that $e_{1}(m), e_{2}(m)$ belong to the tangent space $T_{m}\left(\Sigma^{3}\right)$. There exists a frame with the required property since the group $G_{2}$ acts transitively on the Grassmannian manifold $G_{2}\left(\mathbb{R}^{7}\right)$. With respect to

$$
\nabla_{e_{1}} X=\nabla_{e_{2}} X=0
$$

we obtain $\left(\beta=e_{1}, \gamma=e_{2}\right) \omega^{3}\left(\nabla_{\alpha} X, e_{1}, e_{2}\right)=0$. The vectors $\nabla_{\alpha} X, \alpha \in T_{m}\left(M^{7}\right)$, generate the normal space of $T_{m}\left(\Sigma^{3}\right)$ and, therefore, the latter equation means that the subspace $T_{m}\left(\Sigma^{3}\right) \subset T_{m}\left(M^{7}\right)$ is of special $G_{2}$-type (see Proposition 2.6). In particular, the vector $e_{7}$ is the third vector tangent to $\Sigma^{3}$ at the point $m \in \Sigma^{3}$. The 2-forms

$$
\begin{aligned}
& e_{2} \wedge e_{7}+e_{3} \wedge e_{5}-e_{4} \wedge e_{6}, \quad e_{1} \wedge e_{7}+e_{3} \wedge e_{6}+e_{4} \wedge e_{5} \\
& e_{1} \wedge e_{2}+e_{3} \wedge e_{4}+e_{5} \wedge e_{6}
\end{aligned}
$$

are elements of $\Lambda_{7}^{2}$. The curvature tensor $\because i$ of $M^{7}$ acts on forms of the type $\Lambda_{7}^{2}$ by the scalar multiplication by $-\frac{1}{42} R$ (see Section 4). This implies

$$
\Re\left(e_{2} \wedge e_{7}+e_{3} \wedge e_{5}-e_{4} \wedge e_{6}\right)=-\frac{1}{42} R\left(e_{2} \wedge e_{7}+e_{3} \wedge e_{5}-e_{4} \wedge e_{6}\right)
$$

and, finally, $R_{2772}=\frac{1}{42} R$ because $\Sigma^{3}$ is a totally geodesic submanifold (i.e. $R_{3527}=$ $R_{4627}=0$ for example). Similarly we obtain $R_{1771}=R_{1221}=\frac{1}{42} R$ and, hence, $\Sigma^{3}$ is a space form of positive sectional curvature $K=\frac{1}{42} R$.

Let $H \subset G=\operatorname{Aut}\left(M^{7}, \omega^{3}\right)$ be a subgroup of the connected component $G$ of the automorphism group of a nearly parallel $G_{2}$-structure ( $\lambda \neq 0$ ) and suppose that for some point $m^{*} \in M^{7}$ the $H$-orbit $N^{4}=H \cdot m^{*}$ is a four-dimensional submanifold. Then ( $* \omega^{3}$ ) is an $H$-invariant 4-form on $N^{4}$, i.e. a constant multiple of the volume form of $N^{4}$. On the other hand, we have

$$
(-8 \lambda) \int_{N^{4}}\left(* \omega^{3}\right)=\int_{N^{4}} \mathrm{~d} \omega^{3}=0
$$

and, thus, $* \omega^{3}$ vanishes on $N^{4}$. This implies that $\omega^{7}$ vanishes on the nomal bundle $T^{1}\left(N^{4}\right)$. Using Proposition 2.6 we obtain a local frame $e_{1}, e_{2}, \ldots, e_{7}$ in the $G_{2}$-bundle over $N^{4}$ such that $e_{4}, e_{5}, e_{6}, e_{7}$ span the tangent space $T\left(N^{4}\right)$ of $N^{4}$. Moreover, on $N^{4}$ the formula

$$
\left.\omega^{3}\right|_{N^{4}}=e_{5} \wedge e_{6} \wedge e_{7}
$$

holds, i.e. $\left.\omega^{3}\right|_{N^{4}}$ is a 3 -form on $N^{4}$ of length one. Denote by $\xi$ the tangent vector field on $N^{4}$ corresponding to this 3 -form under the Hodge operator of $N^{4}\left(\xi=e_{4}\right)$. Then we have

$$
\xi-\omega^{3}=0 . \quad \mathrm{d} N^{4}=\xi \wedge \omega^{3} .
$$

The 3 -form $\omega^{3}$ is invariant under the flow of the vector field $\xi$ on $N^{4}$ :

$$
L_{\xi}\left(\omega^{3}\right)=\xi \hookrightarrow \mathrm{d} \omega^{3}+\mathrm{d}\left(\xi-\omega^{3}\right)=-8 \lambda\left(\xi \omega * \omega^{3}\right)+0=0 .
$$

We summarize the result in the following:
Theorem 6.6. Let $N^{4}=H \cdot m^{*}$ be a four-dimensional orbit, $H \subset G=\operatorname{Aut}\left(M^{7}, \omega^{3}\right)$. Then the restriction of $\omega^{3}$ to $N^{4}$ is a 3-form on $N^{4}$ with length one. Moreover, there exists a vector field $\xi$ such that
(i) $\xi \ldots \omega^{3}=0, \mathrm{~d} N^{4}=\xi \wedge \omega^{3}$;
(ii) $L_{\xi}\left(\omega^{3}\right)=0$.

In particular, the Euler characteristic $\chi\left(N^{4}\right)$ of $N^{4}$ vanishes, $\chi\left(N^{4}\right)=0$.
Corollary 6.7. The isotropy representation $G(m) \longrightarrow G L\left(T_{m}\left(M^{7}\right)\right)$ at any point $m \in N^{4}$ of a four-dimensional orbit $N^{4}$ decomposes into a one-dimensional and 2 three-dimensional representations.

Denote by $G=\operatorname{Aut}\left(M^{7}, \omega^{3}\right)$ the connected component of the automorphism group of the nearly parallel $G_{2}$-manifold. The isotropy subgroup $G(m)$ of any point $m \in M^{7}$ is a subgroup of $G_{2}$. Thus, we obtain

$$
\operatorname{dim}(G)-\operatorname{dim}(G(m)) \leq 7, \quad G(m) \subset G_{2} .
$$

Theorem 6.8. Let $\left(M^{7}, \omega^{3}\right)$ be a simply connected, compact manifold with nearly parallel $G_{2}$-structure not isometric to the sphere $S^{7}$. Then the automorphism group $G$ has dimension $\leq 13$.

Proof. First we discuss the case of $15 \leq \operatorname{dim}(G)$. Then the isotropy subgroup $G(m)$ is a subgroup of $G_{2}$ with $8 \leq \operatorname{dim}(G(m))$. However, the group $G_{2}$ contains only two subgroups satisfying this condition, namely $G(m)=S U(3)$ and $G_{2}$ (see [12]). If $G(m)=G_{2}$ for any point $m \in M^{7}$, the Weyl tensor vanishes identically and the space $M^{7}$ is the sphere $S^{7}$. Suppose that there exists a point $m \in M^{7}$ such that $G(m)=S U(3)$. Then the group $G$ acts transitively on $M^{7}$. Moreover, $G$ is a simply connected, compact group of dimension 15 containing a subgroup isomorphic to $S U(3)$. The classification of compact groups yields that there exists only one group with these properties, namely $G=S U(4)$. The Riemannian metric on $M^{7}$ is given by an $S U(3)$-invariant scalar product of $\mathbb{R}^{7}=\mathbb{C}^{3} \oplus \mathbb{R}^{1}$. The family of $S U(3)$-invariant scalar products depends on one positive parameter, but only the usual scalar product in $\mathbb{R}^{7}$ defines an Einstein metric on the homogeneous space $M^{7}=S U(4) / S U(3)$. Consequently, $M^{7}$ is isometric to the sphere $S^{7}$.

Next we study the case of $\operatorname{dim}(G)=14$. Then $7 \leq \operatorname{dim}(G(m))$ for any point $m \in M^{7}$. The group $G_{2}$ does not contain a subgroup of dimension seven (see [12]) and therefore we obtain again $G(m)=S U(3)$ or $G_{2}$. The case $G(m)=G_{2}$ for any point $m \in M^{7}$ is impossible. Suppose $G(m)=S U(3)$ for some point. Then $G$ is a compact group of dimension 14 containing a subgroup isomorphic to $S U(3)$. Moreover, $G$ acts on $M^{7}$ with cohomogeneity one. Since $M^{7}$ is simply connected, there exists a point $m_{0} \in M^{7}$ such that $G\left(m_{0}\right)=G$. Then $G$ is isomorphic to $G_{2}$. In a neighbourhood of this point the Einstein metrics is a warped product metric $\mathrm{d} r^{2} \oplus f(r) g_{0}$, where $g_{0}$ is a $G_{2}$-invariant metric on the sphere $G_{2} / S U(3)=S^{6}$. Since the metric is regular at the point $m_{0}, M^{7}$ is a space of constant sectional curvature (see [4]).

Theorem 6.9. Let $\left(M^{7}, \omega^{3}\right)$ be a simply connected, compact manifold with nearly parallel $G_{2}$-structure not isometric to the sphere $S^{7}$. The group $S U(3)$ cannot occur as an isotropy $\operatorname{subgroup} G(m) \subset \operatorname{Aut}\left(M^{7}, \omega^{3}\right)$.

Proof. The isotropy group $G(m)$ of an arbitrary point $m \in M^{7}$ is a subgroup of $G_{2}$. Suppose that it is isomorphic to $S U(3)$ for one point $m \in M^{7}$. The isotropy representation $G(m) \longrightarrow$ $S O\left(T_{m}\left(M^{7}\right)\right)$ is the standard representation of $S U(3)$ in $S O(7)$. The possible dimensions of $G(m)$-invariant subspaces $V \subset T_{m}\left(M^{7}\right)$ are $0,1,6$ and 7 . The tangent space $T_{m}(N)$ of the orbit $N=G \cdot m=G / G(m)$ defines a $G(m)$-invariant subspace. Consequently, we obtain four possibilities:
(a) $G=G(m)=S U(3)$;
(b) $\operatorname{dim}(G)=9$ and $G(m)=S U(3)$;
(c) $\operatorname{dim}(G)=14$;
(d) $\operatorname{dim}(G)=15$.

In case $\operatorname{dim}(G)=14$ or $15, M^{7}$ is isometric to the sphere $S^{7}$. If $\operatorname{dim}(G)=9$, the automorphism group $G$ is (locally) isomorphic to $G=S U(3) \times U(1)$. Denote by $X$ the Killing vector field corresponding to the $U(1)$-action. Suppose that $X$ has a zero point $m^{*}$ and consider the orbit $N$ through $m^{*}$. Then $X$ vanishes at every point of $N$ and therefore by Corollary $6.4, N$ is a one- or three-dimensional submanifold. The group $S U(3)$ acts on $N$ as a group of isometrie $s$ and we obtain an isomorphism $S U(3) \longrightarrow \operatorname{Iso}(N)$. The compact group $\operatorname{Iso}(N)$ is isomorphic to $U(1)$ (in case $\operatorname{dim}(N)=1$ ) or to $S O(4)$ (in case $\operatorname{dim}(N)=3$ ). Since any two- or four-dimensional real representation of the group $S U(3)$ is trivial, we conclude that $G$ acts trivially on $N$. Hence, $G$ is a nine-dimensional subgroup of $G_{2}$, a contradiction. Consequently, the Killing vector field $X$ corresponding to the $U(1)$-action has constant length one. Next we prove that the $U(1)$-action on $M^{7}$ is a free action. Indeed, for any point $m^{*}$ the isotropy subgroup $G\left(m^{*}\right)$ of $G=S U(3) \times U(1)$ has the dimension bounded by $\operatorname{dim}(G)-7=2 \leq \operatorname{dim}\left(G\left(m^{*}\right)\right.$ ). In case $\operatorname{dim}\left(G\left(m^{*}\right)\right)=2$, the group $G$ acts transitively on $M^{7}$ and then the isotropy group $G(m)=S U(3)$ cannot occur. Hence, $G\left(m^{*}\right)=G_{1} \times \mathbb{Z}_{p} \subset S U(3) \times U(1)$ is a group of dimension at least three. There are only two possibilities: $G_{1}=S U(2)$ or $G_{1}=S U(3)$. In both cases we get a $\mathbb{Z}_{p}$-action preserving the orientation on the six-dimensional sphere $S^{6}=G_{2} / S U(3)$ commuting with the usual $S U(3)$-action on $S^{6}$. This means that the group $\mathbb{Z}_{p}$ is trivial, i.e. the action of $U(1)$ is free.

This $U(1)$-action on $M^{7}$ defines a compact six-dimensional manifold $K^{6}=M^{7} / U(1)$ as well as a principal bundle $\pi: M^{7} \longrightarrow K^{6}$. Since $M^{7}$ is an Einstein space of positive scalar curvature, $K^{6}$ is also an Einstein space of positive scalar curvature. The group $S U(3)$ acts as a group of isometries on $K^{6}$ and the isotropy subgroups of this action are $S U(2)$ or $S U(3)$. Hence $K^{6}$ is isometric to the projective space $\mathbb{C} \mathrm{P}^{3}$. Moreover, the 2 -form $\mathrm{d} X$ is a horizontal 2-form

$$
\begin{aligned}
(X \rightharpoonup \mathrm{~d} X)(Y) & =\mathrm{d} X(X, Y)=X(X, Y)-Y\langle X, X\rangle-\langle X,[X, Y]\rangle \\
& =\left\langle\nabla_{X} X, Y\right\rangle+\left\langle X, \nabla_{Y} X\right\rangle=0 .
\end{aligned}
$$

i.e. $X$ is a connection in the principal $U(1)$-fibre bundle $\pi: M^{7} \longrightarrow K^{6}$ with curvature form $\mathrm{d} X$. Finally it turns out that $M^{7}$ is the seven-dimensional sphere.

It remains to discuss the case of $\operatorname{dim}(G)=8$. In this case, the group $G$ coincides with $G(m)=S U(3)$ and acts on $M^{7}$ with cohomogeneity two. The subgroups of $S U(3)$ and their dimensions are:

| $S O(3)$ | 3 |
| :--- | :--- |
| $S(U(2) \times U(1))$ | 4 |
| $S U(2)$ | 3 |
| $U(1) \times U(1)$ | 2 |
| $U(1)$ | 1 |

The orbit $G / G\left(m^{*}\right)$ for any point $m^{*} \in M^{7}$ is therefore either a point or at least a fourdimensional submanifold. The group $G\left(m^{*}\right)=S(U(2) \times U(1))$ cannot occur since the Euler characteristic of $G / G\left(m^{*}\right)=S U(3) / S(U(2) \times U(1))=\mathbb{C} \mathrm{P}^{2}$ is not zero (Theorem 6.6). On the other hand, near the point $m \in M^{7}$ all orbits are of type $S U(3) / S U(2)$. Since the set of all principal orbits of the $G$-action is dense, the type of the principal orbit is $G\left(m^{*}\right)=$ $S U(2)$. Consequently, we see that $G=S U(3)$ acts on $M^{7}$ with two orbit types only. There is a finite set $\gamma_{1}, \ldots \gamma_{k}$ of closed geodesics in $M^{7}$ such that $G\left(m_{i}\right)=S U(3)\left(m_{i} \in \gamma_{i}\right)$ and any other orbit is of type $S U(3) / S U(2)=S^{5}$. There exists only one geodesic $\gamma$. Indeed, $Y=M^{7} / S U(3)$ is a two-dimensional manifold with $k$ boundary components and

$$
M^{7}-\left\{\gamma_{1}, \ldots, \gamma_{k}\right\} \longrightarrow \operatorname{Int}(Y)
$$

is an $S^{5}$-fibration. On the other hand, we have

$$
0=\pi_{1}\left(M^{7}\right)=\pi_{1}\left(M^{7}-\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}\right)=\pi_{1}(\operatorname{Int}(Y))
$$

and $Y=D^{2}$ has only one boundary component. Consequently, $M^{7}$ is a seven-dimensional Einstein manifold with isometry group $S U(3)$ and the principal orbits are of type $S U(3) /$ $S U(2)$; there exists only one exceptional orbit - the fixed-point set of $S U(3)$. It turns out that $M^{7}$ is isometric to the standard seven-dimensional sphere $S^{7}\left(M^{7}\right.$ is topologically the sphere and the metric is an $S U(3)$-invariant Einstein metric with respect to the usual action of $S U(3) \subset S O(6) \subset S O(8)$ see [31).

Corollary 6.10. Let $\left(M^{7}, \omega^{3}\right)$ be a simply connected, compact manifold with nearly parallel $G_{2}$-structure not isometric to the sphere $S^{7}$. Then
(i) the dimension of the automorphism $G=\operatorname{Aut}\left(M^{7}, \omega^{3}\right)$ has dimension $\leq 13$;
(ii) any isotropy subgroup $G(m)$ has dimension $\leq 6$.

## 7. Nearly parallel $G_{2}$-structures with large symmetry group

In this section we will classify all seven-dimensional compact, simply connected manifolds with a nearly parallel $G_{2}$-structure and symmetry group of dimension at least 10 . This classification includes in particular the classification of compact, simply connected homogeneous nearly parallel $G_{2}$-structures.

Let ( $M^{7}, g$ ) be a compact, simply connected seven-dimensional nearly parallel $G_{2}$ manifold different from the sphere $S^{7}$. Let $G$ be the connected component of the automorphism group of the $G_{2}$-structure. We already know that

$$
\operatorname{dim}(G) \leq 13 \quad \text { and } \quad \operatorname{dim}(G(m)) \leq 6 \text { for any point } m \in M^{7}
$$

holds. We will discuss the spaces case by case depending on the dimension of the group $G$.
Case 1: $\operatorname{dim}(G)=13$. In this case the dimension of the isotropy group $G(m)$ is six for any point $m \in M^{7}$ and the group $G$ acts transitively on $M^{7}=G / G(m)$. There exists only one connected six-dimensional subgroup of the group $G_{2}$ (see [12]), namely the isotropy group of the exceptional orbit of the $G_{2}$-action on the Grassmannian manifold $G_{3}\left(\mathbb{R}^{7}\right)$ (see Proposition 2.6). The Lie algebra of this subgroup is defined by the relations:

$$
\begin{aligned}
& \omega_{12}+\omega_{34}+\omega_{56}=0, \quad \omega_{17}+\omega_{36}+\omega_{45}=0, \quad \omega_{27}+\omega_{35}-\omega_{46}=0, \\
& \omega_{13}=\omega_{14}=\omega_{15}=\omega_{16}=\omega_{23}=\omega_{24}=\omega_{25}=\omega_{26} \\
& \quad=\omega_{37}=\omega_{47}=\omega_{57}=\omega_{67}=0
\end{aligned}
$$

and the subgroup is isomorphic to $G(m)=S O(4)=[S U(2) \times S U(2)] /\{ \pm 1\}$. Denote by $G^{*}$ and $G^{*}(m)$ the 2-fold covering of the group $G$, respectively, of the group $G(m)$. Then $G^{*}$ is a compact, simply connected 13 -dimensional Lie group containing a subgroup isomorphic to $G^{*}(m)=S p(1) \times S p(1)$. Using the classification of simple Lie groups we deduce that $G^{*}$ is isomorphic to $G^{*}=S p(2) \times S p(1)$. Consequently, the homogeneous Einstein manifold $M^{7}$ is of type $M^{7}=[S p(2) \times S p(1)] /[S p(1) \times S p(1)]$ and therefore $M^{7}$ is isometric either to the standard sphere $S^{7}$ or to the squashed sphere $S_{\text {squas }}^{7}$.

Case $2: \operatorname{dim}(G)=12$. In this case the dimension of any isotropy group $G(m)$ is bounded by $5 \leq \operatorname{dim}(G(m)) \leq 6$. Since the group $G_{2}$ does not contain a subgroup of dimension five we obtain that any isotropy group $G(m)$ has dimension six, i.e. any isotropy group is a six-dimensional subgroup of $G_{2}$ containing the group $S O(4)$ described above:

$$
S O(4) \subset G(m) \subset G_{2} .
$$

It is a matter of fact that such a subgroup of $G_{2}$ coincides with $S O$ (4). Indeed, consider the covering $G_{2} / S O(4) \longrightarrow G_{2} / G(m)$. Any deck transformation $g \in G_{2}$ is homotopic to
the identity map and therefore its Lefschetz number coincides with the Euler characteristic $\chi\left(G_{2} / S O(4)\right)>0$, a contradiction. Consequently, the group $G$ acts on $M^{7}$ with one orbit type only and $M^{7}$ is the total space of a fibration over $S^{1}$ with the fibre $F=G / S O(4)$. On the other hand, the exact homotopy sequence of this fibration yields

$$
\cdots \longrightarrow \pi_{1}(F) \longrightarrow \pi_{1}\left(M^{7}\right)=1 \longrightarrow \pi\left(S^{1}\right)=\mathbb{Z} \longrightarrow \pi_{0}(F)=1,
$$

a contradiction. Finally we see that the case $\operatorname{dim}(G)=12$ is impossible.
Case $3: \operatorname{dim}(G)=11$. In this case the dimension of any isotropy group $G(m)$ is bounded by $4 \leq \operatorname{dim}(G(m)) \leq 6$.

Suppose that $\operatorname{dim}(G(m))=4$ for one point $m \in M^{7}$. Then $G$ acts transitively, $M^{7}=$ $G / G(m)$, and the isotropy group $G(m) \subset G_{2}$ is connected. Using the list of all connected subgroups of the exceptional group $G_{2}$ (see [12]) we obtain two possibilities:
(a) $G(m)$ is the subgroup $[S U(2) \times U(1)]\{ \pm 1\}$ of $S U(3)$. This is in fact the group $S U(3) \cap$ $S O(4)$ and its Lie algebra is given by the equations:

$$
\begin{aligned}
& \omega_{12}+\omega_{34}+\omega_{56}=0, \quad \omega_{36}+\omega_{45}=0, \quad \omega_{35}-\omega_{46}=0 \\
& \omega_{13}=\omega_{14}=\omega_{15}=\omega_{16}=\omega_{17}=\omega_{23}=\omega_{24}=\omega_{25}=\omega_{26}=\omega_{27}=0 \\
& \omega_{37}=\omega_{47}=\omega_{57}=\omega_{67}=0
\end{aligned}
$$

The representation of $G(m)$ in $\mathbb{R}^{7}$ splits into a one-, two- and four-dimensional invariant subspace,

$$
\mathbb{R}^{7}=E^{1} \oplus E^{2} \oplus E^{4},
$$

where $E^{2}=\operatorname{Span}\left(e_{1}, e_{2}\right), E^{4}=\operatorname{Span}\left(e_{3}, e_{4}, e_{5}, e_{6}\right)$ and $E^{1}=\operatorname{Span}\left(e_{7}\right)$.
(b) $G(m)$ is the subgroup $[U(1) \times S U(2)] /\{ \pm 1\}$ of $S O(4)=[S U(2) \times S U(2)] /\{ \pm 1\}$. The Lie algebra of this group is given by the equations:

$$
\begin{aligned}
& \omega_{13}=\omega_{14}=\omega_{15} \\
&=\omega_{16}=\omega_{23}=\omega_{24}=\omega_{25}=\omega_{26} \\
&=\omega_{37}=\omega_{47}=\omega_{57}=\omega_{67}=0 \\
& \omega_{12}+\omega_{34}+\omega_{56}=0 \\
& \omega_{17}+\omega_{36}+\omega_{45}=0, \quad \omega_{36}=\omega_{45}, \quad \omega_{27}+\omega_{35}-\omega_{46}=0, \quad \omega_{35}=-\omega_{46} .
\end{aligned}
$$

The representation of $G(m)$ in $\mathbb{R}^{7}$ splits into a three- and four-dimensional invariant subspace,

$$
\mathbb{R}^{7}=F^{3} \oplus F^{4}
$$

where $F^{3}=\operatorname{Span}\left(e_{1}, e_{2}, e_{7}\right)$ and $F^{4}=\operatorname{Span}\left(e_{3}, e_{4}, e_{5}, e_{6}\right)$.
First we consider the case that $\pi_{1}(G)$ is a finite group. Denote by $G^{*}$ its universal covering and lift the isotropy subgroup to $G^{*}(m)=S p(1) \times U(1)$. Then $G^{*}$ is a simply connected Lie group of dimension 11 containing the two-dimensional torus $T^{2} \subset S p(1) \times U(1)$.

Moreover, since the Euler characteristic of $M^{7}=G^{*} / G^{*}(m)$ vanishes we conclude that the rank of $G^{*}$ is greater or equal to 3 ,

$$
\operatorname{rank}\left(G^{*}\right) \geq 3, \quad \operatorname{dim}\left(G^{*}\right)=11, \quad \pi_{1}\left(G^{*}\right)=1
$$

The classification of all compact Lie groups yields that $G^{*}$ is isomorphic to $S U(3) \times S U(2)$. In case (a) the isotropy group $G(m)$ is contained in $S U(3)$ and consequently the space $M^{7}$ admits two real Killing spinors (the $G_{2}$-structure is of type 2). On the other hand, the automorphism group of the $G_{2}$-structure of the manifold $M(3,2)$ with two Killing spinors described in Section 4 is isomorphic to $S U(3) \times S U(2)$, this group acts transitively on $M^{7}$ and the isotropy representation coincides with the representation of $G(m)$ in case (a). Hence, in case (a) $M^{7}$ is isometric to $M(3,2)$. In a similar way we can handle case (b). The manifold $N(1,1)$ admits a $G_{2}$-structure of type 1 (not the 3-Sasakian metric!, see Sections 4 and 5) and the automorphism group of this $G_{2}$-structure coincides obviously with the isometry group $S U(3) \times S U(2)$. A calculation of the isotropy representation yields that it coincides with the representation of case (b) and consequently $M^{7}$ is isometric to $N(1,1)$.

Suppose now that $\pi_{\mathrm{I}}(G)$ is not a finite group. The exact homotopy sequence

$$
\cdots \longrightarrow \pi_{2}\left(M^{7}\right) \longrightarrow \pi_{1}(G(m))=\mathbb{Z} \longrightarrow \pi_{1}(G) \longrightarrow 1
$$

yields that $\pi_{1}(G(m))=\pi_{1}(G)=\mathbb{Z}$. Consider a finite covering $G^{*}$ of $G$ such that $G^{*}$ splits into $G^{*}=U(1) \times G_{1}$, where $G_{1}$ is a simply connected group of dimension 10. Then $G_{1}$ is isomorphic to $\operatorname{Spin}(5)$. The decomposition $G^{*}=U(1) \times \operatorname{Spin}(5)$ defines a Killing vector field $X$ on $M^{7}$ invariant with respect to the action of $\operatorname{Spin}(5)$. Consequently, $X$ has a constant length. In particular, at the point $m \in M^{7}$ the isotropy group $G(m)$ preserves the vector $X(m)$, i.e. the group $G(m)$ is of type $G(m)=S U(3) \cap S O(4)$ and the isotropy representation splits into

$$
T_{m}\left(M^{7}\right)=E^{1} \oplus E^{2} \oplus E^{4}
$$

On the other hand, the embedding $\Phi: G^{*}(m)=U(1) \times \operatorname{Spin}(3) \longrightarrow U(1) \times \operatorname{Spin}(5)=G^{*}$ is given by two injective homomorphisms

$$
i: \operatorname{Spin}(3) \longrightarrow \operatorname{Spin}(5), \quad j: U(1) \longrightarrow U(1)
$$

$\left(\pi_{1}\left(G^{*} / G^{*}(m)\right)=1!\right)$ and by one homomorphism $k: U(1) \longrightarrow \operatorname{Spin}(5)$,

$$
\Phi(z, g)=(j(z), k(z) \cdot i(g))
$$

Therefore the isotropy representation of the space $G^{*} / \Phi\left(G^{*}(m)\right)$ considered only as a $\operatorname{Spin}(3)$-representation is isomorphic to the isotropy representation of the space $\operatorname{Spin}(5) / i$ $(\operatorname{Spin}(3))$. There are only two injective homomorphisms $i_{1}, i_{2}: \operatorname{Spin}(3) \longrightarrow \operatorname{Spin}(5)$. The first of them $i_{1}$ is related to the five-dimensional irreducible representation of $S O(3)$ and $i_{2}$ is the usual inclusion of $S O(3)$ into $S O(5)$. In case of $i_{1}$ we obtain that the isotropy representation of the homogeneous space is irreducible and in case of $i_{2}$ we obtain the
isotropy representation of the Stiefel manifold $V_{5,2}$ which splits into the irreducible subspaces $E^{1} \oplus E^{3} \oplus E^{3}$. This contradicts the mentioned decomposition of $T_{m}\left(M^{7}\right)$ and finally the case $G^{*}=U(1) \times \operatorname{Spin}(5)$ is not possible.

We discuss now the case that any isotropy group $G(m)$ is a six-dimensional group, i.e. $G(m)=S O(4) \subset G_{2}$. Since $\operatorname{dim}(G)=11$, any orbit $N=G / G(m) \subset M^{7}$ has dimension five and its tangent space $T_{m}(N) \subset T_{m}\left(M^{7}\right)$ defines a $G(m)=S O(4)$-invariant subspace of $T_{m}\left(M^{7}\right)=\mathbb{R}^{7}$. The representation of the group $S O(4) \subset G_{2} \subset S O(7)$ splits into two $S O(4)$-irreducible parts, namely $\mathbb{R}^{7}=F^{3} \oplus F^{4}$ where $F^{3}=\operatorname{Span}\left(e_{1}, e_{2}, e_{7}\right)$ and $F^{4}=\operatorname{Span}\left(e_{3}, e_{4}, e_{5}, e_{6}\right)$, a contradiction. Consequently, this case is impossible.

Case 4: $\operatorname{dim}(G)=10$. In this case the dimension of any group $G(m)$ is bounded by $3 \leq \operatorname{dim}(G(m)) \leq 6$.

Suppose that $\operatorname{dim}(G(m))=3$ for one point $m \in M^{7}$. Then $G$ acts transitively, $M^{7}=$ $G / G(m)$, and the isotropy group $G(m) \subset G_{2}$ is connected. Using the list of all connected subgroups of the exceptional group $G_{2}$ (see [12]) we obtain four possibilities. In any case, $G(m)$ is isomorphic to $S O(3)$ or to $S U(2)$. Since $\pi_{1}\left(M^{7}\right)=1$ we obtain $\pi(G)=$ $\pi_{1}(G(m))=0$ or $\mathbb{Z}_{2}$. Consider the universal coverings $G^{*}$ and $G^{*}(m)=\operatorname{Spin}(3)$. Then $G^{*}$ is a simply connected Lie group of dimension 10 . Moreover, since the Euler characteristic of $M^{7}=G / G^{*}(m)$ vanishes we conclude that the rank of $G^{*}$ is greater or equal to 2 ,

$$
\operatorname{rank}\left(G^{*}\right) \geq 2, \quad \operatorname{dim}\left(G^{*}\right)=10, \quad \pi_{1}\left(G^{*}\right)=1
$$

The classification of all compact Lie groups yields that $G^{*}$ is isomorphic to $\operatorname{Spin}(5)$ and the manifold $M^{7}$ is isometric to the Stiefel manifold $V_{5.2}$ or to the spaces $S O(5) / S O(3)$ described in Section 4.

Suppose now that the isotropy group $G(m)$ is a four-dimensional subgroup for one point $m \in M^{7}$. Then $G(m)$ is one of the two subgroups of $G_{2}$ considered in the discussion of the case $\operatorname{dim}(G)=11$. In particular, $G(m)$ is a connected subgroup. The orbit $G \cdot m$ through $m$ is a six-dimensional manifold, but only the group $G(m)=S U(3) \cap S O(4) \subset G_{2}$ has a six-dimensional invariant subspace. Consequently, $G / G(m)$ is the principal orbit of the $G$-action on $M^{7}$ and there are no other orbits of dimension six. But exceptional orbits do not exist at all. Indeed, since $S U(3)$ cannot occur as an isotropy subgroup, an exceptional orbit must be of type $O^{4}=G / S O(4)$. However, the isotropy representation of $S O(4)$ is $F^{3} \oplus F^{4}$, a contradiction to Corollary 6.7. Finally the $G$-action defines a fibration $M^{7} \longrightarrow$ $M^{7} / G=S^{1}$ and the exact homotopy sequence yields that $M^{7}$ cannot be simply connected.

It remains to discuss the situation where any orbit is a four-dimensional manifold and every isotropy group $G(m)$ coincides with $S O(4)$. In this situation we can apply the same argument as before and we obtain again a contradiction to Corollary 6.7.

In particular we proved the following:
Theorem 7.1. Any compact nearly parallel $G_{2}$-manifold with automorphism group of dimension $\operatorname{dim}(G) \geq 10$ is homogeneous.

Probably there exist non-homogeneous nearly parallel $G_{2}$-manifolds admitting an automorphism group of dimension $9,8, \ldots$ However, explicit non-homogeneous examples with a nine- or eight-dimensional automorphism group up to now are not known.

On the other hand, using similar arguments as before one can finish the classification of compact, homogeneous nearly parallel $G_{2}$-manifolds. It turns out that in case $\operatorname{dim}(G) \leq 9$ the space is isometric to $Q(1,1,1)$ or to one of the manifolds, $N(k, l)$.

Theorem 7.2. Any compact, simply connected, homogeneous nearly parallel $G_{2}$-manifold is one of the spaces described in Tables 1-3.

## References

[1] Chr. Bär, Real Killing spinors and holonomy, Comm. Math. Phys. 154 (1993) 509-521.
[2] H. Baum, Th. Friedrich, R. Grunewald and I. Kath, Twistors and Killing Spinors on Riemannian Manifolds (Teubner-Verlag, Stuttgart/Leipzig, 1991).
[3] A.L. Besse, Einstein Manifolds (Springer, New York, 1987).
[4] L. Bérard-Bergery, Sur de nouvelles Variétés Riemanniennes d'Einstein, Publications de l'Institut E. Cartan No. 4 (Nancy) (1982) 1-60.
[5] E. Bonan, Sur les variétés riemanniennes à groupe d'holonomie $G_{2}$ ou Spin(7), C. R. Acad. Sci. Paris 262 (1966) 127-129.
[6] C.P. Boyer, K. Galicki and B.M. Mann, Quaternionic reduction and Einstein manifolds, Comm. Anal. Geom. 1 (1993) 1-51.
[7] C.P. Boyer, K. Galicki and B.M. Mann, The geometry and topology of 3-Sasakian manifolds, J. Reine u. Angew. Math. 455 (1994) 183-220.
[81 R.L. Bryant, Metrics with exceptional holonomy, Ann. Math. 126 (1987) 525-576.
[9] R.L. Bryant and S.M. Salamon, On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989) 829-850.
[10] F.M. Cabrera, M.D. Monar and A.F. Swann, Classification of $G_{2}$-structures, preprint, Odense (1994).
[11] M.J. Duff, B.E.W. Nilson and C.N. Pope, Kaluza-Klein supergravity, Phys. Rep. 130 (1986) 1-142.
[12] E.B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. (2) 6 (1957) 11-244.
[13] M. Fernandez and A. Gray, Riemannian manifolds with structure group $G_{2}$, Ann. di Math. Pura ed Appl. 32 (1982) 19-45.
[14] Th. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr. 97 (1980) 117-146.
[15] Th. Friedrich and I. Kath, Variétés riemanniennes compactes de dimension 7 admettant des spineurs de Killing, C. R. Acad. Sci. Paris 307 Série I (1988) 967-969.
[16] Th. Friedrich and I. Kath, Compact seven-dimensional manifolds with Killing spinors, Comm. Math. Phys. 133 (1990) 543-561.
[17] K. Galicki and S. Salamon, On Betti numbers of 3-Sasakian manifolds, preprint ESI Vienna, March (1995).
[18] G.W. Gibbons, D.N. Page and C.N. Pope, Einstein metrics on $S^{3}-, R^{3}$ - and $R^{4}$-bundles, Comm. Math. Phys. 127 (1990) 529-553.
[19] V.V. Gorbatsevich and A.L. Onishchik, Lie transformation groups, in: Lie Groups and Lie Algebra, Encyclopaedia of Mathematical Sciences, Vol. 20 (Springer, Berlin, 1991).
[20] A. Gray, Vector cross products on manifolds, Trans. Amer. Math. Soc. 141 (1969) 465-504.
[21] A. Gray, Weak holonomy groups, Math. Zeitschrift 123 (1971) 290-300.
[22] D. Juyce, Compact Riemamian 7 -manifulds with holonomy $G_{2}$ : I and II, preprint, Princeton (1994).
[23] I. Kath, Variétés riemanniennes de dimension 7 admettant un spineur de Killing réel, C. R. Acad. Sci. Paris Série I 311 (1990) 553-555.
[24] W. Reichel, Über die Trilinearen alternierenden Formen in 6 und 7 Veränderlichen, Dissertation Greifswald (1907).
[25] S.M. Salamon, Riemannian geometry and holonomy groups, Pitsman Res. Notes in Math., Vol. 201 (Longman, Harlow, 1989).
[26] E. Thomas, Vector fields on manifolds, Bull. Amer. Math. Soc. 75 (1969) 643-683.


[^0]:    * Corresponding author. E-mail: friedric@mathematik.hu-berlin.de.

