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1. Introduction 

A nearly parallel Gz-structure on a seven-dimensional manifold is a 3-form m3 of special 
algebraic type satisfying the differential equation 

do3 = -Sh(*03) 

for some constant h # 0. The existence of m3 is equivalent to the existence of a spin structure 
with a Killing spinor, i.e. a spinor $ satisfying 

vx@ = AX. + VX E TM. 

In case h = 0, w3 defines a geometric G2-structure (dw3 = 0, 6w3 = 0). Excluding the 
case of the seven-dimensional sphere there are three types of nearly parallel G2-structures 
depending on the dimension of the space KS of all Killing spinors. Nearly parallel G2- 
structures with dim(KS) = 3 are 3-Sasakian manifolds and nearly parallel G2-structures 
such that dim(KS) = 2 are Einstein-Sasakian spaces. There are examples of compact nearly 
parallel Gz-manifolds where the dimension of the space of all Killing spinors equals one 
and we call such spaces proper G2-manifolds. 

Recently Joyce [22] solved an open problem in holonomy theory, namely the existence 
problem of compact seven-dimensional Riemannian manifolds with Gz-holonomy. On the 
other hand, Boyer et al. [7] constructed new compact examples of 3-Sasakia manifolds and 
investigated the global geometry of these spaces. In dimension seven, 3Sasakian manifolds 
are special nearly parallel Gz-structures and such manifolds have been studied a long 
time ago (see [ 12,201). However, during the last 10 years, these special Einstein manifolds 
appeared as Einstein spaces where the Dirac operator has the smallest possible eigenvalue 
and many compact examples are known since this time (see [l 11). The aim of this paper 
is to revisit once again the results as well as the examples of compact nearly parallel G2- 
structures known up to now. Moreover, starting from 3-Sasakian manifold we construct 
new manifolds with a nearly parallel G2-structure. A 3-Sasakian manifold admits a second 
Einstein metric obtained from the given one by scaling the metric in the directions of the 
orbits of the Spin(3)-action. It turns out that this Einstein metric is a proper G2-structure and 
we obtain new nearly parallel G2-structures from the examples of 3-Sasakian manifolds 
mentioned above. 

Finally we investigate the automorphism group of a compact nearly G2-manifold and 
we classify in particular all homogeneous G2-manifolds. The automorphism group G = 
Aut(M’, w3) of a nearly parallel G2-manifold has some special properties. In particular, 
if dim(G) 1 10, G acts transitively on M’. The zero set of infinitesimal automorphisms 
is either one- or three-dimensional and a four-dimensional orbit of this group action is of 
special topological and geometric type. Moreover, the isotropy groups G(m) are subgroups 
of the exceptional G2 and one can list them explicitly. Combining all these informations 
we can classify the compact, nearly parallel G2-manifolds with a large symmetry group. 
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2. The exceptional group G2 

The group G2 is a compact, simple and simply connected 14-dimensional Lie group. In 
this section we collect some basic algebraic facts about this group. In particular, we will 
define G2 as the isotropy group of a real @k(7)-spinor. Since in dimension seven these 
spinors correspond to the 3-forms w3 of general type in A’@‘). this definition of the group 
G? is equivalent to the usual one as the subgroup of GL(7; IF!) preserving the 3-form in [w’ 

wi=et AezAe7fei AejAeg-el A ea A eg 

-e2Ae3Aeg-e2AeqAeg+ejAeqAe7+egAegAe_i. (1) 

The advantage of this point of view is that a topological G2-structure on a seven-dimensional 
manifold defines a Riemannian metric as well as a spinor field of constant length. We shall 
use the equivalence between topological G2-structures and 3-forms of general type and 
between these and Riemannian metrics together with a unit spinor field many times in our 
investigations of G2-structures of special geometrical type. 

Letet...., e7 be the standard orthonormal basis of the Euclidian vector space Iw’ and 
denote by Clz#(rW’) the real Clifford algebra. We will use the real representation of this 
algebra on A7 := [ws given on its generators by 

et = EIS + E27 - E36 - E45. 

e3 = -El6 + E25 - E38 + E47, 

eg = -El3 - E24 + E57 + Ea. 

e7 = E12 - E34 - E56 + E78. 

e2 = -El7 + E28 + E35 - E46, 

e4 = -El5 - E26 - E37 - E4s. 

ef, = E14 - E23 - E58 + E6’. 

where E;j is the standard basis of the Lie algebra so(%): 

E;j = 

0 ......... 0 

......... _l... 

i I ... . 

................. 

... 1 ......... ... . 
0 ......... 0 

i .i 

If we restrict this representation to Spin(7) c Clif(R7) we obtain the real spin representation 
K : Spin(7) + SO(A7). The group Spin(7) acts transitively on the sphere 

S(A7) = {ll$II = 1) c A7 = R8. 

We now define the group G:! as the subgroup of Spin(7) preserving the spinor $0 := 
‘(l,O,....O) 

Gz = lx E Qin(7) I do = $01. 
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Consequently the sphere S7 is diffeomorphic to the homogeneous space Spin(7)/G2 and 
we obtain from the exact homotopy sequence of this fibration 

no(G2) = 0, n1(G2) = 0, n2(G2) = 0, r3(G2) = iz. 

Let us now calculate the Lie algebra (12 of G2. We identify the Lie algebra of Spin(7) with 
dpin(7) = (w = cicj Wijeiej 1 wij E R} c ClifS(R7).TheLiealgebrag2isthesubalgebra 
of this algebra containing all elements w satisfying w . I/JO = 0. Let w = C;_,jw;jeiej be 
any element of gpin(7). Then w . $0 = 0 holds iff 

w12 + w34 + w56 = 0, _-WI3 + w4 - %I1 = 0, --WI4 - W23 - W57 = 0, 

-WI6 - W25 + W37 = 0, WI5 - W26 - w47 = 0, 011 + W36 + W45 = 0, 

w27 + w35 - W46 = 0. 

We consider the universal covering S&7) -+ SO(7) of the special orthogonal group 
SO(7). Because of (- 1) @ G2, there is an isomorphism from G2 onto a subgroup of S0(7), 
which we also denote by G2. We now describe this group. This will yield a second definition 
of G2 using 3-forms on R7. The key point is a special relation in dimension seven between 
real spinors and generic 3-forms. 

Let I/? E A7 be a fixed spinor. Then the map 

is an isomorphism between R7 and the orthogonal complement of $J in AT. We observe that 
for X, Y E R’ the spinors $J and YXlc, + (X, Y)$ are orthogonal to each other. Therefore 
we can define a (2, I)-tensor A* by 

Yx+ = -(X, Y)$ + A$,(Y, Xl@. (2) 

A+ has the following properties: 

(1) &(X, Y) = -&/,(Y, X), 
(2) (I’, A$(Y, X)) = 0, 
(3) A+(Y, &(Y, X)) = -IIYl12X + (X, Y)Y. 
It defines a 3-form ~3, by wi (X, Y, Z) = (X, Ati (Y, Z)). 

Vice versa, a (2, I)-tensor A on R’ which has properties ( l)-(3) defines a one-dimensional 
subspace E(A) = {I/J E A7 I YX+ = -(X, Y)yP + A(Y, X)$1. Consequently, we 
obtain a bijection from the projective space P(A7) = RP7 onto the set of 3-forms w3 E 
A3(R7) whose tensor A defined by w3(X, Y, Z) = (X, A(Y, Z)) has the above-mentioned 
properties. 

In particular, if $ = @u := ’ (1, 0, . . , 0), then a direct calculation yields w& = wi, 

where 02 is given by Eq. (1). 
Lets be an element of Spin(7) and n (g) the corresponding element in SO(7). We compare 

the 3-forms associated to the spinors $ and R$ and obtain the equation 

w;3* = (n(&))*w& 
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The 3-form W; defines the spinor + up to a real number. Hence, the image of the group 
Gz c Spin(7) with respect to 75 : S@(7) w SO(7) equals 

G? = {A E SO(7) ] A*& = w,,,). 

3 - However. the equation A*w, - wu 3 for A E GL(7) implies A E SO(7). See for a proof 
[8,24]. Using this, we obtain 

Gz = {A E GL(7) / A*w; = o;). 

Remark 2.1. Similarly, we can investigate the action of S@(7) on the Stiefel manifolds 
Vz(A7) and V3(A7) of orthonormal pairs and triples of spinors, respectively. This action is 
transitive, too. The isotropy group of a fixed pair of spinors is isomorphic to SU(3) and the 
one of a triple is isomorphic to SU( 2). 

Remark 2.2. The GL(7)-orbit A:(rw7) := {A*wi I A E GL(7)} is an open subset of 
A”(R7) since dim A3(R7) = 3.5 and dim GL(7) - dim Gz = 49 - 14 = 35. Let c$ be an 
element of this orbit, i.e. o3 = A*m3 for some A E GL(7). Then o? defines an inner product 
on Iw7 by ( , )u. := A*( , ), an orientation 0, := A*(rl A . A e7) and a corresponding 
Hodge operator *a. : Ap(R7) F--+ A7-~‘(R7). 

Remark 2.3. Let $1. $2 E A7 be spinors of the same length and t E Iw7 such that 
($1 = $2. Then we have for the induced 3-forms W: = w$, and wz = W& 

In order to prove Remark 2.3, we use the equations which define the tensors A 1 = Ati,, 
and A2 = AeI?. From YX$2 = -(Y. X)*2 + A2(Y, x)1/2 it follows that YX[@t = 
-(Y, X)6 $1 + A 1 (Y, X)c $1. By the definition of A 1 this is equivalent to 

-(XT 0Yllr1 - (Y, AI(X, <))$I + AICY, AICX, <))$I 

= -(Y. X)t’h - (A2(Y, X), ()$I + AI(A~(Y. Xl. 6)$1. 

or to 

(-IX, t)Y + AI(Y. AI(X, 4)) + (Y. XE - AI(A~(Y. X). C))$I 

= ((Y. AI(X, <)) + (AICY, Xl, [),+I. 

Since the Clifford multiplication of real spinors by a vector is anti-symmetric we con- 
clude that 

AICY, AI(X,O) + (Y, X)6 = AI(Az(Y, Xl.0 + (X.t)Y. (3) 

(Y. AI(X, <I) = (A2CY. X). 0, (4) 

where (4) is equivalent to wt(X, Y, 6) = w2(X, Y. 6) and to AI (X, t) = A2CX. 0 
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Let now X, Y, Z E R7 be vectors orthogonal to 6. There exists an X E R7, X I c such 
that Z = At (X, {) = A2(X, c). From Eqs. (3) and (4) we conclude 

(W, At(Y, Z)) = (W, At(Y, AI(X, 6?))) = (W, AI(A~(Y, X), c)) 

= (W, Az(Az(Y, X), 0) = -(W, A2(4, A20’, Xl)), 

where the last equation holds because of property (3) of the (2, I)-tensor AZ. Consequently, 
we get wt (W, Y, Z) = --w2(W. Y, Z). The assertion follows. 

Now we recall the decomposition of Ap(R7) into irreducible components with respect 
to the action of G2. 

Proposition 2.4. 
(1) R7 = A’ (R7) =: Ai is irreducible. 
(2) A2(R7) = A: @ A:,, where 

A; = {a2 E A2 1 *(w3 r\a2) = 2~~) = (X-w3 1 X E R7}, 

A:, = {a2 E A2 1 *(co3 A (r2) = -(r2) = 92. 

(3) A3(R7) = A: CB A; $ A;,, where 

A; = (tw3 1 t E R’), A; = {*(w3 ~a’) 1 a’ E A;}, 

A;7=(cx3~A3~a3A~3=0,a3A\~3=0). 

Proposition 2.5. The wedge product m3 A : A3 (R7) + A6 ( R7) has the following prop- 
erties with respect to the decomposition A3(R7) = A: @ A: $ Ai7: 
(1) m3 A (A; @ Az7) = 0; 
(2) if~3=*(w3Aa)‘)~A~,thenw3Ar13=-4*a1. 

Similarly, the wedge product %w3A : A2(R7) -+ A6(R7) has the following properties 
with respect to the decomposition A2(R7) = A: @ AT4: 
(3) (*w3) A Ay4 = 0; 
(4) ifc? = X-J E A$ then (*w3) A a2 = 3(*X). 

Next we study the action of the group G2 on the Grassmannian manifolds G2(R7) and 
G3 (R7) of oriented two- and three-dimensional linear subspaces in R7. 

Proposition 2.6. 
(1) G2 acts transitively on G2(R7). 
(2) G2 acts on G3 (R7) with cohomogeneity one. The principal orbits have dimension 11 

and there are two exceptional orbits of dimension eight. 
(3) For any E3 E G3(R7) the inequality lw3(E3)1 _i I holds . The three-dimensional 

subspace E3 belongs to the exceptional orbit with respect to the G2-action if and only 
iflw3(E3)/ = 1. 

Proof G2(R7) = SU(7)/[S0(2) x S0(5)] is a lo-dimensional manifold. On the other 
hand, the intersection of the Lie algebras 62 and GO(~) x SO(~) is the four-dimensional 
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subalgebra of ~0(7) defined by the equations 

WI; = W2i = 0 for i > 3, ws7 = w37 = w47 = 0. 

wfl + w4.5 = 035 - W46 = w24 - W67 = 0, WI2 + 034 + Wh = 0. 

265 

Hence the Gz-orbit of the standard 2-plane Sparr(et, e2) has dimension 10. Since this 
orbit is a compact submanifold of G2(R7), it coincides with the Grassmannian manifold. 

Fix a three-dimensional subspace E’. Since G2 acts transitively on Gz(R’) in the G?- 
orbit through E” there exists a three-dimensional subspace containing the vectors rl and 
ez. For simplicity we also denote this space by E’. The isotropy group of the vectors rl . q 
inside GZ is the group SU(2) acting on Span(c3. eq, es, es}. Therefore we may assume that 
the third vector of E3 is given by cos(cp)e3 + sin(cp)eT. Consequently, any Gz-orbit in 

G3(5!‘) contains a subspace of the special form 

E”(V) = Spanjet, ez, cos(cpk3 + sin(cp)e-rl. 

The Lie algebra h(q) of the isotropy group of E”(q) is the nine-dimensional subalgebra of 
GO(~) given by the equations 

014 = 015 = 016 = W24 = 025 = Wzf, = 0, w37 = 0, 

cos(p)w34 + sin((P = cos(p)W35 f sin(q)w75 = cos(p)w36 + sin(q)w_ir, = 0, 

sin(cp)w)j - cos(cp)w17 = sin(V)@23 - cos(cpk4-i = 0. 

We calculate the intersection of the Lie algebras (12 and b(q). It turns out that 

dim ln2 n h(cp)l = 
3 if cos(cp) # 0, 
6 if cos(cp) = 0. 

Consequently, the G2-orbit of the space E’(q) has dimension 1 I (in case cos(cp) # 0). or 
dimension eight (in case cos(cp) = 0). Moreover, we calculate the value 03(E3(cp)): 

w”(E”(cp)) = sin(p). 0 

Remark 2.7. A three-dimensional subspace E3 c R7 is said to be Gz-special if its Gz-orbit 
is an exceptional orbit. The following conditions are equivalent: 

(i) E3 is a special G;?-subspace; 
(ii) Iw”(E”)I = 1; 

(iii) for any vectors X, Y E E3 and Z I E3 the relation w3(X, Y, Z) = 0 holds. 

3. Topological and geometrical G2-reductions 

Let M7 be a seven-dimensional manifold and R(M’) the frame bundle of M’. We define 
the bundle Ai(M7) by 

&M7) := R(M’) xGLt7) A_:(R7) c R(A4’) xc~(7) A3(R7) = A3(M7). 
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Definition 3.1. A topological Gz-structure on M’ is a Gz-reduction of the frame bundle 
R(M’), i.e. a subbundle PC* satisfying 

G2 of GL(7) 

4 4 

Pcz q Wf’) 

L I( 

M’ . 

Similarly we define topological SU(2)-, W(3)- and S@(7)-structures. 

The fact that G2 is a subset of SO(7) and of Spin(7) implies that a Gz-structure PG> on 
M’ induces an orientation of M’ (i.e. ur = 0), a Riemannian metric g on M7 such that the 
corresponding W(7)-bundle equals PG? xc2 S0(7), and a spin structure Pc2 xc2 Spin(7) 
(i.e. w2 = 0). Furthermore it defines the following nowhere vanishing spinor + E T(S) in 
the real spinor bundle S = PC? xc2 A7 of M’. Since G2 c Spin(7) is the isotropy group 
of r,ko E A7 the map ti : PC+ -+ AT, e(p) = $0, has the property +(pg) = g-‘ti 
for all g E G2 and is therefore a section in S. Because of the G2-invariance of wu the 
Gz-structure defines in the same way a section o3 in Ai = R(M’) x~~(7) A:(rW7) = 

PG? xc2 A:(R7), by co3 : Pcz --+ A:(R7), w3(P) = co;. On the other hand the spinor 
rj defines a (2, I)-tensor field A = A$ (see Eq. (2)) on M7 and we have m3 = g(., A(., .)). 

Proposition 3.2. Let M’ be a compact seven-dimensional manifold. The,following condi- 
tions are equivalent: 

(i) &I7 admits a topological SlJ(2)-structure; 
(ii) M’ admits a topological SU(3)-structure; 

(iii) M’ admits a topological G2-structure; 
(iv) M7 admits a topological Spin(7)-structure; 
(v) the first and the second Stiefel-Whitney class of M7 vanish, i.e. w) = 0 and w2 = 0. 

Proof Implications (i) =+ (ii) + (iii) =+ (iv) and the equivalence (iv) + (v) are obvious. It 
remains to show that the existence of a topological Spin(7)-structure implies the existence 
of a topological SU(2)-structure. Let S be the real spinor bundle associated to the given 
Spin(7)-structure. Its dimension equals 8, the dimension of M7 equals 7. Thus, there exists 
a section I/J of length one in f(S). On the other hand, any seven-dimensional orientable 
compact manifold admits two linearly independent vector fields [26]. Denote these vector 
fields by X and Y. Then $, X$ and Y $ are spinor fields, which are linearly independent in 
any point of M7. Thus M7 admits a triple (@I, (~2, $3) of spinor fields which are orthogonal 
in any point. The spinors I/Q (i = 1, 2, 3) are maps IJ& : Psptn --+ A7 satisfying I/J; (pg) = 
g-‘$q (p) for all g E Spin(7). Now we can define a SU(2)-structure on M7 by 

PSU(?) := ]P E PSpin I tiltPI =‘(I, 0,. , O), +2(P) = ‘(0, I,(),. . . ,O), 

$3(P)=f(o,o,1.0 ,...,O)l. 0 
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Obviously the above-mentioned map from the set of G2-reductions of R(M’) into the 
set of 3-forms is injective. Thus we obtain: 

Proposition 3.3. There is a one-to-one correspondence hetll’een the G?-stuctures on M’ 
and the sections qf Ai( 

Similarly we have: 

Proposition 3.4. There is a one-to-one correspondence between the G2-.stuctures on M7 
and the 4-tupels (0, g, Pspin, $), where 0 is an orientation, g a metric, P,st,i,, LI .spin 
structure and + a spinor$eld of length one on Ml. 

Now we turn to geometrical Gz-stuctures. 

Definition 3.5. Let PC+ c R(M’) be a G2-reduction and g the associated Riemannian 
metric. We denote by V the Levi-Civita connection of g. PG? is said to be geometrical if 
one of the following equivalent conditions is satisfied: 

(i) V reduces to PC?; 
(ii) the holonomy group Hol(M’, g) of M’ is contained in G?; 

(iii) the associated 3-form o3 is parallel, i.e. VW’ = 0; 
(iv) the associated spinor field $ is parallel, i.e. V+ = 0 where, here V is the induced 

covariant derivative on the spinor bundle S. 

An immediate consequence is the following fact proved by Bonan in 1966 (see [S]) 

Proposition 3.6. If g is the Riemannian metric of a geometrical G2-structure on M’. then 
(M’, g) is Ricci-jlat, i.e. Ric = 0. 

ProqjY Let + be the associated section of the spinor bundle S of M’. Because of V+ = 0 
we obtain for the curvature tensor 91’ of the induced connection V on S 

!lP(X. Y)lj = vxvylj - vyvxlj - V[X.YIl) = 0 

for all vector fields X, Y on M’. We recall that the Ricci tensor on M’ satisfies 

7 
Ric(X)cp = -2 c Sk!ti'(x, Sk)(p 

k=l 

for any vector field X and any spinor 40 on M7, where SI , . . , s7 is a local orthonormal frame 
(see [2]). Consequently, Ric(X)+ = 0 for all vector fields X and the assertion follows since 
+ vanishes nowhere. 0 

Now we can generalize the condition V$ = 0 and obtain the notion of a nearly parallel 
Gz-structure. 
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Definition 3.7. A topological CT-structure on M’ is said to be nearly parallel if the as- 
sociated spinor + is a Killing spinor, i.e. there exists a real number h such that $ satisfies 
the differential equation Vx$ = hX$ with respect to the Levi-Civita connection of the 
induced metric. 

Differentiating the equation that defines the (2, I)-tensor A we obtain the following equiv- 
alent condition. 

Proposition 3.8. A topological G2-structure on MT is nearly parallel if and only if the 
associated tensor A satisfies 

(VzA)(Y, X) = 2UdK Z>X - g(X, Z)Y + A@, AK Xl>1 (5) 

with respect to the Levi-Civita connection of the induced metric where h is the same number 
as in Definition 3.7. 

Now we translate this condition into a differential equation for the 3-form w3. 

Proposition 3.9. A topological G2-structure on M7 is nearly parallel if and only [f the 
associated 3-form w3 satisfies 

VzcJ = -2h(Z,*w3) 

with respect to the Levi-Civita connection of the induced metric where h is the same number 
as in Dejinition 3.7. 

Proo$ The 3-form O.J~ is defined by w3(X, Y, Z) = g(X, A(Y, Z)). Differentiating this 
equation we observe that Eq. (5) is equivalent to 

(Vzw3)(W, Y, X) = 2Q(Z, g(W, X)Y - g(W, Y)X - A(W, A(Y, X))) 

for any vector field Z. For fixed Z the 3-form on the right-hand side of this equation equals 
locally 

2h c g(Z, g(Si, Sk)Sj - g(Si, sj)ek - A(si, A(sj, Sk)))si A Sj A Sk 

icj<k 

= -2.A. C g(Z, A(si, A(sjv sk)))si A Sj A Sk, 
i<j<k 

where si, . . . , s7 is a section of the Gz-structure on M7. However, we obtain from 

W3=S1 AS2AS’+Sl As3As5-~1 AsqAsg 

-S~AS~AS~-S~AS~AS~+S~AS~AS~+S~AS~AS~, 

on the one hand all A(st, A(sj, Sk)), and on the other hand *w3. The assertion follows by 
comparing these terms. cl 

In the same way as in the case of geometrical Gz-structures we prove: 
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Proposition 3.10. If g is the Riemannian metric of a nearly parallel Gz-structure on M7, 
then (M7, g) is an Einstein space. 

Proof The induced spinor $ is a Killing spinor and we obtain from OX+ = hX x,b 

!$(X, Y)l// = VxVy@ - vyvxq - V[X,Y~$ = 2h’(Y. x + g(X, Y)) $. 

This yields for the Ricci tensor 

7 

Ric(X)$ = -2 ~93P(x. skj+ = -4h2 CS~(.S~X + g(X. .N))$ = 24h2x+. 
k=l k=l 

Since $I has no zeros, Ric(X) = 24h2X and, therefore, (M’. g) is an Einstein space of 
constant scalar curvature R = 7 . 24h2. 0 

Next we generalize the following result of Gray and Femandez. 

Proposition 3.11 [9,20,21]. Let PG? c R(M7) be a topological G2-reduction, g its in- 
duced metric, CI? the induced 3-form and * the Hodge operator: Then the following condi- 
tions are equivalent: 

(i) PG2 is geometrical,’ 
(ii) VW” = 0; 

(iii) dw” = 0, d * u3 = 0. 

We transfer the proof of this proposition given in [9] to the case of nearly parallel G2- 
reductions and obtain: 

Proposition 3.12. Let PG~ c R( M7) be a topological G2-reduction, g its induced metric, 
m3 the induced 3-form, + the induced spinor and * the Hodge operator: Then the following 
conditions are equivalent: 

(i) PG? is nearly parallel, i.e. the spinor I/J satisfies VX$I = AX+; 
(ii) Vzo’ = -2h(Z -1 *w3); 

(iii) So” = 0, do3 = -81* w3. 

Proof The 3-form u3 defines the metric g. Let C, c Ai (M7) be the set of 3-forms that de- 
fine this metric also. The fibre of C, equals the S0(7)-orbit of w3, i.e. SG(7)/G2. Its tangent 
space T(S0(7)/G2) is Gz-invariant and seven-dimensional, therefore T(S0(7)/G2) = 
SW3 := {X,*J 1 X E TM7}. Since w3 is a section in C, and V is a covariant derivative 
in Z,, the covariant derivative Vo3 is a section of T*M7 @I SW,. We consider now the 
projection p) defined by 

pl:T*M7~SSw33a’~~3-cr’~(r3~A4 

and the contraction 

p2 : T*M7 @ SW3 - A2. 
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By comparing the decomposition of T*M7@Swx and A4@A2 intoirreducible G2-subspaces 
we see that the sum of p) and p2 

p1 @ p2 : T*M7 @ $3 - A4 $ A2 

is injective. Consequently, VX* = hX$ is equivalent to 

I 

p, (VJ) = -2hp1( ‘_*~~)=-2~Csi~~i_*w~=-8A.*w~, 
i=l 

/ 
p*(vW3) = -2hp*(‘_1*w3) = -2h C *W3(Si, Si, . . .) = 0. 

i=l 

The assertion now follows from p1 (Vw3) = dw3, p2(Vw3) = 6~~. 0 

Remark 3.13. There is the following difference between the cases h = 0 and h # 0: we 
proved that a G2-structure is nearly parallel if and only if for the induced 3-form w3 the 
equations Sw3 = 0, dw3 = -8h * w3 hold. In case h = 0, the resulting equations dw3 = 0 
and 6w3 = 0 are independent. In case k # 0, the condition dW3 = -8h * w3 implies 
&I? = 0. 

4. Nearly parallel G2-structures, Killing spinors and contact geometry 

We summarize now several results on nearly parallel G2-structures. A general reference 
is the book [2]. In particular, we derive necessary geometric conditions for the underlying 
Riemannian metric and we introduce three types of nearly parallel G2-structures depending 
on the number of Killing spinors. Finally we discuss the compact examples of each type 
known up to now. 

Let (M7, g) be a compact Riemannian spin manifold with a Killing spinor @, 

and denote by w3 the corresponding 3-form satisfying the differential equation 

dw” = -8h * 03. 

Then M7 is an Einstein manifold of positive scalar curvature R = 4 . 7 6 . h* = 168h* 
and, consequently, the fundamental group nr (M) is finite. In case h # 0 the Riemannian 
manifold ( M7, g) is locally irreducible and not locally symmetric except if it has constant 
sectional curvature (see [2]). Using the associated nearly parallel G2-structure we decom- 
pose the bundles of forms Ap(M7) into the irreducible components mentioned above. The 
curvature tensor 

!H: A2 = A; @ A:, - A: @ AT, = A2 

splits into the scalar curvature and the Weyl tensor W: 

1 
!li= W-aR. 
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The Weyl tensor satisfies several algebraic equations. They can be formulated in the fol- 
lowing way. For any 2-form w* E A2 the Clifford product W(w*) . Q vanishes, i.e. 

holds (see [2]). Since A y4 is the Lie algebra of the group Gz. being the isotropy group of 
the spinor $, we conclude that the Weyl tensor has the form 

0 0 
w= 0 W]4 ’ ( > 

where Wt4 : Af4 --+ A:, ’ 1s a symmetric endomorphism. In case Wt4 # 0, the holonomy 
representation Holo -+ N(7) is irreducible and we can apply Berger’s Holonomy The- 
orem. Since dim(M’) = 7, there are two possibilities: Hol’ = G2 or Holo = SO(7). The 
case of Hoi” = G2 cannot occur since M’ is an Einstein space with positive scalar curvature 
(h # 0). Consequently, the Riemannian manifold M’ is - at least from the point of view of 
holonomy theory - of general type: Holo = SO(7). Since the fundamental group of M’ is 
finite we can without loss of generality assume that M’ is simply connected, nt (M’) = 0. 
Furthermore, we exclude the case of the space of constant curvature, i.e. M’ # S’. Denote 
by KS( M’, g) the space of all Killing spinors, 

KS(M’, g) = {+ E T(S): Ox+ = AX. @for all vectorsx E T(M’)). 

The dimension of KS(M’, g) is bounded by three, dim[KS(M’, x)] ( 3 (see [2]). The 
nearly parallel Gz-structures split into three different types: 

nearly parallel Gz-structures of type I : dim[KS] = I (proper Gz-structures), 
nearly parallel G?-structures of type 2: dim[KS] = 2, 
nearly parallel Gz-structures oftype 3: dim[KS] = 3. 

The nearly parallel G2-structures of type 2 and 3 are described using the language of 
contact geometry. In fact, Th. Friedrich and I. Kath observed that a simply connected seven- 
dimensional Riemannian spin manifold with scalar curvature R = 42 admits at least 

two Killing spinors e M’ is an Einstein-Sasakian manifold, 

three Killing spinors u M’ is a 3-Sasakian manifold 

(see [16]; for the definition of a Sasakian manifold also see next section). For the Gz- 
structures of type I we also use the notion of a proper G2-structure. 

Examples of nearly parallel G2-structures of type 3 (i.e. 3-Sasakian manifolds) are known 
(see Table I). We have the sphere S’, the space N( 1, 1) = SU(3)/S’ and these are the only 
regular 3Sasakian manifolds in dimension seven (see [ 161). In the past Boyer et al. obtained 
non-regular examples S(pl, ~2, ~3) (see [6,7]). Up to now, strong topological conditions 
for a compact seven-dimensional manifold M’ in order to admit a 3-Sasakian structure are 
not known. For example, it seems to be an open question whether the manifold S* x S5 pos- 
seses such a structure or not! This special question is interesting since a seven-dimensional 
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Table 1 
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Examples of nearly parallel Gn-structures of type 3 (3-Sasakian manifolds) 

M’ Iso,(M7) dim[Iso] 

N(1, 1) 
S(Pl. P27 P3) 

SU(3) x SU(2) 
depends on pi 

11 
<8 

Table 2 
Examples of nearly parallel Gz-structures of type 2 (Einstein-Sasakian manifolds) 

X6 M’ Iso,(M7) dim[Iso] 

F(1.2) 
s2 X s2 X s2 
CP2 x s2 

%2 
Pk X s2 

N(1, 1) SU(3) x SU(2) 11 

Q(l> 1, 1) SU(2) x SU(2) x SU(2) X U(1) 10 

M(3.2) ScJ(3) x SU(2) x c/(l) 12 

1/‘5,2 SO(S) x U(1) II 
M;(3’ks8) SO(3) X U(1) 4 

manifold with 3-Sasakian structure and being the product of two lower-dimensional mani- 
folds must be diffeomorphic to S* x S5. 

Nearly parallel G2-structures of type 2 (i.e. Einstein-Sasakian manifolds) can be ob- 
tained as principal S’-bundles over six-dimensional Kahler-Einstein manifolds with pos- 
itive scalar curvature. Indeed, let X6 be a Kahler-Einstein manifold with positive scalar 
curvature and denote by cl (X6) its first Chem class. Let A > 0 be the largest integer 
such that q(X6)/A is an integral cohomology class. Consider the principal S’-bundle 
s’ - IV7 - X6 with Chem class CT = ct (X6)/A. Then M’ is simply connected 
and admits an Einstein-Sasakian structure. Using the described construction we obtain the 
regular Einstein-Sasakian manifolds presented in Table 2, where Pk (3 5 k 5 8) denotes 
one of the de1 Pezzo surfaces with a KWer-Einstein metric of positive scalar curvature. 
The spaces N(1, l), Q(l, I, I), M(3,2) and the Stiefel manifold V5,2 are homogeneous 
spaces together with some invariant Einstein metric, Table 2 contains also the isometry 
group of the Einstein-Sasakian manifold M7 as well as its dimension (see [ 111). 

There are three examples of nearly parallel Gz-structures of type 1, i.e. proper G2- 
structures (see Table 3). The first example is the so-called squashed 7-sphere. Indeed, the 
standard sphere (S’, g,,,) is a Riemannian submersion over the projective space HP’ with 
fibre S3. Scaling the canonical metric in the fibre S3, there exists a second scaling factor 
such that the metric gt on S’ is an Einstein metric. It turns out that (S’, gt) admits exactly 
one Killing spinor. The second example is the homogeneous space N(k, I) = SU(3)/Sl,, 

where the embedding of the group St = U( 1) into W(3) is given by 

s’ 3 Z H diag(& Z1, z,-(k+l)) E W(3). 

These spaces have two homogeneous Einstein metrics. In case (k, 1) = (1, 1) one of these 
Einstein metrics is the 3-Sasakian structure mentioned above and the second Einstein metric 
admits one Killing spinor. In case (k, I) # (1, l), there exists only one Killing spinor for 
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Table 3 
Examples of nearly parallel G2-structures of type 1 

M’ Iso,, dim [ho] 

(S’ 1 g\q”a\) SIG) x SP(l) 13 
N(k.l).(k.l) # (I. 1) S.!/(3) X U(l) 9 
sO(5,/so(3, SO(5) IO 

each of these two metrics, i.e. the nearly parallel G;?-structure is of type 1 (a proper G2- 
structure). The third example is a special Riemannian metric on SO(5)/SO(3) with one 
Killing spinor (see [S]). The isotropy representation of this space is the unique seven- 
dimensional irreducible representation of the group SO(3) --+ G2 c SO(7). 

Remark 4.1. As we mentioned before, strong topological obstructions for the existence of 
a 3-Sasakian metric on a compact seven-dimensional spin manifold are not known (very 
recently, the obstruction 63(M7) = 0 was found, see [ 171). The same situation happens in 
case of an Einstein-Sasakian metric with positive scalar curvature. This gives rise to the 
following question: 

Do there exist compact, simply connected spin manifolds M’ with a nearly parallel G?- 
structure of type 1 (resp. 2) which cannot admit - for example for topological reasons - any 
Einstein-Sasakian (resp. 3Sasakian) metric at all? 

5. New examples 

In this section we construct new examples of nearly parallel G2-structures and show that 
they are of type 1, i.e. they are proper G2-structures. Let us recall the definition of a Sasakian 
structure. 

Definition 5.1. A vector field V on a Riemannian manifold (M, g) is called a Sasakian 
structure if the following conditions are satisfied: 
(1) V is a Killing vector field of unit length; 
(2) the ( 1, I)-tensor cp defined by cp = -V V is an almost complex structure on the distri- 

bution orthogonal to V (p2 = -1 and cp = ++I* on VI); 
(3) (Vxcp)Y = g(X, Y) V - g(V, Y) Xfor all vectorsx, Y. 

Definition 5.2. A triple (VI, V2, V3) is called a 3-Sasakian structure on M if the following 
conditions are satisfied: 

(1) 
(2) 
(3) 
(4) 

the vector Vi defines a Sasakian structure for each i = 1,2, 3; 
the frame (VI , Vz, V3) is orthonormal; 
for each permutation (i, j, k) of signature 6, we have VV, Vj = (-1)’ Vk; 
on the distribution orthogonal to (Vi, V2, V3), the tensors pi = -0V; satisfy vi vj = 

(-1)” qk. 
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Consider a Riemannian manifold M7 of dimension seven, admitting a 3-Sasakian struc- 
ture. A vector is called horizontal if it is orthogonal to each Vi and vertical if it is a linear 
combination of Vi. Define, for s > 0, the metric gs on M7 by g”(X, Y) = g(X, Y) if X (or 
Y) is horizontal, and g”( V, W) = s2 g(V, W) for vertical V, W. 

A straightforward computation gives the following: 

Lemma 5.3. The man$old (M7, g”) is Einstein ifand only ifs = 1 or s = l/2/5. 

The 3-Sasakian manifold (M’, g’) admits, by definition, a nearly parallel Gz-structure 
of type 3. On the other hand, by Proposition 3.10, every nearly parallel G2-structure on 
M defines an Einstein metric. Hence, the manifold (M7, gS) with s = l/l/s is a natural 
candidate for a nearly parallel Gz-structure. Indeed, we have: 

Theorem 5.4. The manifold (M’, g”) admits a nearly parallel G2-structure for s = I/&. 

Prooj Fix s > 0 and a local orthonormal frame X1, . . . , X4 of the horizontal distribution. 
Let Z, (a = 1,2,3) be the vector Z, := V,/s and denote by V the Levi-Civita connection 
of the metric g = g’ . We define a 3-form o by 

w := Fl + F2, 

where Fl := ZI A Z2 A Z3, F2 := c,Z, AW, and w, := ;CiXi A Vx,V,. 
The 3-form w is clearly in A:(M7). Denote by * the Hodge operator with respect to the 

metric g’. Then we calculate the forms * F1 and * F2: 

6* F1 =cw, AU,, * F2 = Zl A Z2 A w3 + z2 A 23 A WI + 23 A z1 A 02. 
a 

A straightforward computation yields the formulas 

dZ1 = 2swt - (2/s)Z2 A Z3, 

dZ3 = 2~~3 - (2/S)Zi A z2, 

Now we compute 

dZ2 = 2sw2 - (2/s)Zg A ZI, 

dF1 = d (Z, A 22 A Z3) = 2s(*F2). 

dwi =d((l/2s)dZt + (l/s2)Z2 AZ3) 

= (l/s2)(dZ2 A 23 - Z2 A dZ3) 

= @/S)(wz A Z3 - w3 A Z2), 

dti2 = (2/s)(w3 A Z1 - WI A 23), dw3 = (2/s)(wr A Z2 - 02 A Zl), 

dF2=xdZar\w, -c Z, A dw, = 12s(*F1) + (2/s)(*F2). 
a a 

Finally we obtain do = d(F1 + F2) = 12s(*F1) + (2s + (2/s))(*F2). So dw is a scalar 
multiple of *w if and only if 12s = 2s + 2/s. 0 

As remarked in Section 4, the only known examples of proper nearly parallel G2- 
structures - up to now - are the squashed 7-sphere, the Wallach spaces N(k, 1) and an 
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Einstein metric on SO(S)/SO(3) related to the irreducible representation SO(3) -+ G2 + 
SO(7). The importance of Theorem 5.4 can thus be seen in the light of the following result: 

Theorem 5.5. The nearly parallel Gz-structures constructed in Theorem 5.4 are proper: 

Prwji Suppose that a constant multiple k of the metric K” on M’ admits an Einstein- 
Sasakian structure given by the Killing vector field t. Denote by !)I the curvature tensor of 
(M’, g) and by !)t” the curvature tensor of (M’. kg”). Then we obtain from Lemma 4 of 
[2, p. 781: 

h’“(!)i’(X, Y>c, V,) = k[g”(Y. 6),$(X, V,) - $(X. <)g”(Y. I’,)]. 

Choosing X and Y horizontal we obtain 

$(!P(X, Y,6. V,) = 0. 

(*) 

On the other hand, comparing the Levi-Civita connection V of the metric R with the Levi- 
Civita connection V” of the metric g” we calculate 

!)iO(X, Y)V, = .?!)i(X. Y)v,, + (.? - l)V,,,,]VV, = (.? - l)V,,.,,\ v,, 

Here we apply the same lemma for V,, as Sasakian structure on (M’, g). Consequently, 
4 is perpendicular to all vectors of the form V,, yI , I’ V,. It is easy to see that the set of all 
these vectors is just the vertical distribution, so $ is horizontal. 

Next. taking X = VI, a = 2 and Y horizontal in Eq. (*). one obtains 

,~“(!)P( v, . Y)C, V2) = 0. (**) 

The vector [Y, VI] is a horizontal one and we can calculate 

!~1~(v,.Y)v~=v~,V~v~-v~v~,v~-v~“,,u,v2 

=s’(v;,vyv2 - V,,VyV2) fs2!li(V1, Y)V2 

= .P(v;, vy V? - vv, vy V2) 

by similar arguments. Now VY V2 runs through all horizontal vector fields when Y is hor- 
izontal. Together with (w) we obtain that t: is perpendicular to all vectors of the form 
Vt, Z - VY, Z. The relation 

vo,, z - vv, z = (v;, z - [Z. VI]) - (Vv, z - [Z. VI]) = (.? - 1)VZVl 

shows that 6 is also perpendicular to all horizontal vectors, a contradiction. 0 

Our new examples of nearly parallel Gz-structures are all proper. The recent work of 
Boyer et al. [7] provides a multitude of new examples of strongly inhomogeneous 7- 
manifolds admitting a 3-Sasakian structure. By our previous theorems, they generate the 
first examples of strongly inhomogeneous proper nearly parallel G;?-structures. However, 
these examples arise from a deformation of the 3-Sasakian structure and therefore they live 
on manifolds with 3-Sasakian metric. 
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As K. Galicki pointed out to us, he also proved the result of Theorem 5.4 in a joint paper 
with S. Salamon (in preparation). 

6. The automorphism group of a nearly parallel G2-structure 

We consider a compact, seven-dimensional manifold M’ with a nearly parallel G2- 
structure and denote by w3 its 3-form. Then we have the differential equations 

Vxw3 = -2i(X,*w3), dw3 = -8J. * w3, h # 0. 

Let X be a vector field preserving the 3-form, i.e. 

Lxw3 = d(X,w3) + X,dw’ = d(X,w3) - 8h(X,*w3) = 0. 

In particular, X is a Killing vector field of the Riemannian metric g and VX E f (T @ T) is 
anti-symmetric and coincides-up to a multiple- with the exterior derivative of the 1 -form X: 

VX= ;dX. 

We now calculate the form d(X - 03) using the differential equation for u3 : 

d(X,w3 )(a, BY v) = (V,w3)(X, B, Y) - (VbW3)(X, a, v) + (Vyw”)(X, o> B) 

+ w3(V,X, B, v) - w3(Vj!rX, Q, y) + w3(VyX, o, B) 

= Ww”)(X, (Y, B, VI + 03W,X, 8, VI 

- w3&X; a, y) + 03(V,X, CY, /Y). 

The equation d(X - w3) - 8h(X - *w3) = 0 becomes: 

2h(X-*w3)(cr, BP v) 

= w3(VCYX, B, v) - w3(V&& o, v) + w3(V,X, o, B) 

= :(w3(a-dX,B,y)-w3(B,dX,cr,y)+w3(y_IdX,ar,B)]. 

We apply now the following easy algebraic observation: 

Lemma 6.1. Let q2 be a 2-form and denote by rr7(y2) its A$component with respect to 
the decomposition A2 = A: $ A:,. Suppose that rr7(q2) is given b.v a vector Z, i.e. 
n7(v2) = Z,w3. Then 

w3(a,$ ,B,v)-03(8-172,,.Y)+,3(Y-~2,~,B) 

= 3(Z-*w3)(a, /Y, v). 

The condition that the vector field X preserves the 3-form becomes equivalent to 

2h(X,*w3) = $ .3(Z,*w3), 

where 7r7(dX) = Z,w3. This implies Z = 5 . k . X and consequently we have proved: 
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Theorem 6.2. A Killing vector$eld X preserves u nearly parallel Gz-structure w3 if and 
only if 

Jr7(dX) = $ h . (X,w”). 

We now use Stokes Theorem as well as the identities given in Propositions 2.4 and 2.5 
in order to obtain the following relation between the L’-norms / 1 of X and the A:,-part 
rrll(dX) of dX: 

Theorem 6.3. Let X be a Killing vectorjieldpreserving a nearly parallel Gz-strucwre w3 
on a closed manifold M7. Then 

!j%‘jXl* = In,4(dX)12. 

Proqf We start with the algebraic identity dX A dX A Q? = 21?r7(dX)12 - Ints(dX)I’ 
which is valid for any 2-form n(= dX). By Stokes Theorem and Propositions 2.4 and 2.5 
we obtain 

s 
dXr\ dXAw3= 

s 
X A dX A dw” = -0 

s 
X A dX A (*w”) 

= -8h 
s 

X A rrT(dX) A (*w”) 

= _?p s x A (X&o”) A (*co’) 

= -32~” 
s 

X A (*X) = -32h2(X(‘. 

Therefore we get 

2(rr,(dX)12 - Inr4(dX)\* = -32?1X12. 

Using the equation, nT(dX) = { . h (X __,w3), we have 

In,(dX)l* = +v21X12, 

and the formula follows immediately. 0 

Consider a component C c M’ of the zero set of X. Since X is a Killing vector held. 
C is a totally geodesic submanifold of even codimension. Suppose that dim[C] = 5. Then 
at any point of C we obtain that 0 # dX E _A:, has rank 2 (nT(dX) = O!). This implies 
dX A dX = 0. On the other hand, since dX E A:, we have dX A dX A m3 = -IdX\” (see 
the definition of the space Af4), a contradiction. This yields: 

Corollary 6.4. Any connected component of the z,ero set of a Killing vectorjeld X pre- 
serving a nearly parallel G2-structure w3 has dimension one or three. 

We investigate now the geometry of the three-dimensional components of the zero set C. 
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Theorem 6.5. Let X3 c M7 be a three-dimensional component of the zero set of a Killing 
vectorjeld preserving a nearly parallel G2-structure. Then 
(i) the tangent spaces T(.E3) c T(M7) are G2-special, i.e. the restriction qf w3 to .X3 is 

the volume form of C”; 
(ii) Z3 is a space form of positive sectional curvature K = AR. 

Prooj The equation X ,dw3 + d (XAo3) = 0 yields at any point m E C3 and for any 
three vectors (Y, j3, y E T,,, (Ml) the relation 

0 = d(X,03 )(a, B, Y) = w3(V,X, B, Y) - ,“(V,X, a, v) + w”(V,X* QY, B) 

Letet,ez,..., e7 be a local orthonotmal frame in the G2-bundle such that et (m), ez(m) 
belong to the tangent space T, (C’). There exists a frame with the required property since 
the group G2 acts transitively on the Grassmannian manifold G2([W7). With respect to 

v,, x = v,,x = 0 

we obtain (/3 = et, y = e2) w3(V,X, et, e2) = 0. The vectors 0,X. a E T,(M’), 
generate the normal space of Tm (22”) and, therefore, the latter equation means that the 
subspace T, (Z3) c T, (Ml) is of special G2-type (see Proposition 2.6). In particular, the 
vector e7 is the third vector tangent to C” at the point m E Z3. The 2-forms 

e2 A e7 + eg A eg - e4 A eg , el Ae7+e3Ae6+e4Ae5, 

el Ae2+e3Aeq$egAe6 

are elements of A;. The curvature tensor !li of M7 acts on forms of the type A: by the scalar 
multiplication by --AR (see Section 4). This implies 

!)I(@ Ae7 $eg Aeg -eq Aeg) = -&R(ez Ae7 +ej Aeg -eq Aeg) 

and, finally, R2772 = &R because C3 is a totally geodesic submanifold (i.e. R3527 = 
R4627 = 0 for example). Similarly we obtain Rt77t = Rt22t = AR and, hence, C3 is a 
space form of positive sectional curvature K = AR. 0 

Let H c G = Aut(M’, w3) be a subgroup of the connected component G of the 
automorphism group of a nearly parallel G2-structure (A # 0) and suppose that for some 
point m* E M7 the H-orbit N4 = H . m* is a four-dimensional submanifold. Then (*w3) 
is an H-invariant 4-form on N4, i.e. a constant multiple of the volume form of N4. On the 
other hand, we have 

(-8++o,‘)=/do3=0 

N” N4 

and, thus, *m3 vanishes on N4. This implies that m3 vanishes on the normal bundle TL(N4). 
Using Proposition 2.6 we obtain a local frame et, ez, . . . , e7 in the Gz-bundle over N4 such 
that eq, es, eg, e7 span the tangent space T(N4) of N4. Moreover, on N4 the formula 

031,+ =esAE?rjAt?7 
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holds, i.e. w3],.,,4 is a 3-form on N4 of length one. Denote by 6 the tangent vector held 
on N4 corresponding to this 3-form under the Hodge operator of N4 (6 = eq). Then we 
have 

6 -IW “=O. dN4=tr\w3. 

The 3-form co3 is invariant under the flow of the vector field < on N4: 

&(w’) = t ,dw” + d(e,w”) = -Sh(c ,*03) + 0 = 0. 

We summarize the result in the following: 

Theorem 6.6. Let N” = H . m* be u @ur-dimensional orbit, H c G = Aut(M’, u’). 
Then the restriction of ca3 to N4 is a 3-form on N4 with length one. Moreover; there exists 
m vector,field 4 such that 
(i) <-o” =0, dN4=cr\w3; 

(ii) Lc(o”) = 0. 
In particular, the Euler characteristic x ( N4) of N” vanishes, x ( N4) = 0. 

Corollary 6.7. The isotropy representation G(m) --+ GL(T,(M’)) atunypointm E N” 
of a,fonr-dimensional orbit N4 decomposes into a one-dimensional and 2 three-dimensional 
representations. 

Denote by G = Aut(M7, 03) the connected component of the automorphism group of 
the nearly parallel G2-manifold. The isotropy subgroup G(m) of any point m E M’ is a 
subgroup of Gz. Thus, we obtain 

dim(G) - dim(G(m)) 5 7, G(m) c Gz. 

Theorem 6.8. Let (M’, w3) be a simply connected, compact mumfirld with nearly purallel 
Gz-structure not isometric to the sphere S’. Then the automorphism group G has dimension 
< 13. _ 

Proof First we discuss the case of 15 5 dim(G). Then the isotropy subgroup G(m) is a 
subgroup of Gz with 8 5 dim(G(m)). However, the group G2 contains only two subgroups 
satisfying this condition, namely G(m) = SU(3) and G2 (see [12]). If G(m) = G? for 
any point m E M’, the Weyl tensor vanishes identically and the space M’ is the sphere 
S’. Suppose that there exists a point m E M7 such that G(m) = SU(3). Then the group G 
acts transitively on M’. Moreover, G is a simply connected, compact group of dimension 
15 containing a subgroup isomorphic to SU(3). The classification of compact groups yields 
that there exists only one group with these properties, namely G = SU (4). The Riemannian 
metric on M7 is given by an SU(3)-invariant scalar product of [w7 = C3 @ iw’ . The family of 
&Y(3)-invariant scalar products depends on one positive parameter, but only the usual scalar 
product in OX7 defines an Einstein metric on the homogeneous space M7 = SCJ(4)/SU(3). 
Consequently, M7 is isometric to the sphere S7. 
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Next we study the case of dim(G) = 14. Then 7 5 dim(G(m)) for any point m E M’. 
The group G2 does not contain a subgroup of dimension seven (see [ 121) and therefore 
we obtain again G(m) = SU(3) or G2. The case G(m) = G2 for any point m E M7 
is impossible. Suppose G(m) = SU(3) for some point. Then G is a compact group of 
dimension 14 containing a subgroup isomorphic to SU(3). Moreover, G acts on M’ with 
cohomogeneity one. Since M’ is simply connected, there exists a point rng E M’ such that 
G(mo) = G. Then G is isomorphic to G2. In a neighbourhood of this point the Einstein 
metrics is a warped product metric dr2 ‘8 f(r)gu, where go is a G2-invariant metric on 
the sphere G2/SU(3) = S6. Since the metric is regular at the point mg, M7 is a space of 
constant sectional curvature (see [4]). 0 

Theorem 6.9. Let (M’, w3) be a simply connected, compact manifold with nearly parallel 
G2-structure not isometric to the sphere S’. The group N(3) cannot occur as an isotropy 
subgroup G(m) c Aut(M’, u3). 

ProoJ The isotropy group G(m) of an arbitrary point m E M’ is a subgroup of Gz. Suppose 
that it is isomorphic to SU(3) for one point m E M7. The isotropy representation G(m) -+ 
SO(T,(M7)) is the standard representation of SU(3) in SO(7). The possible dimensions of 
G(m)-invariant subspaces V c T,,, (M7) are 0, 1,6 and 7. The tangent space T,(N) of the 
orbit N = G . m = G/G(m) defines a G(m)-invariant subspace. Consequently, we obtain 
four possibilities: 
(a) G = G(m) = SU(3); 
(b) dim(G) = 9 and G(m) = SU(3); 
(c) dim(G) = 14; 
(d) dim(G) = 15. 

In case dim(G) = 14 or 15, M7 is isometric to the sphere S’. If dim(G) = 9, the 
automorphism group G is (locally) isomorphic to G = SU(3) x U(1). Denote by X the 
Killing vector field corresponding to the U( I)-action. Suppose that X has a zero point m* 
and consider the orbit N through m*. Then X vanishes at every point of N and therefore by 
Corollary 6.4, N is a one- or three-dimensional submanifold. The group SU(3) acts on N as a 
group of isometrie s and we obtain an isomorphism SU(3) + Iso( The compact group 
Iso is isomorphic to U(1) (in case dim(N) = 1) or to SO(4) (in case dim(N) = 3). 
Since any two- or four-dimensional real representation of the group SU(3) is trivial, we 
conclude that G acts trivially on N. Hence, G is a nine-dimensional subgroup of G2, a 
contradiction. Consequently, the Killing vector field X corresponding to the U (1)-action 
has constant length one. Next we prove that the U (I)-action on M’ is a free action. Indeed, 
for any point m* the isotropy subgroup G(m*) of G = SU(3) x U(1) has the dimension 
bounded by dim(G) - 7 = 2 5 dim(G(m*)). In case dim(G(m*)) = 2, the group G 
acts transitively on M’ and then the isotropy group G(m) = SU(3) cannot occur. Hence, 
G(m*) = GI x 22, c SU(3) x U( 1) is a group of dimension at least three. There are only 
two possibilities: G 1 = SU(2) or G 1 = SU(3). In both cases we get a &,-action preserving 
the orientation on the six-dimensional sphere S6 = Gz/SU(3) commuting with the usual 
SU(3)-action on S6. This means that the group ZP is trivial, i.e. the action of U (1) is free. 
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This U (1 )-action on M’ defines a compact six-dimensional manifold K6 = M’/ U( 1) as 
well as a principal bundle n : M’ --+ K6. Since M’ is an Einstein space of positive scalar 
curvature, K6 is also an Einstein space of positive scalar curvature. The group SU(3) acts as 
a group of isometries on K6 and the isotropy subgroups of this action are SU(2) or SU(3). 
Hence Kh is isometric to the projective space CP3. Moreover. the 2-form dX is a horizontal 
‘-form 

(X2dX)(Y) =dX(X, Y) = X(X. Y) - Y(X, X) - (X. [X. Y]) 

= (VXX, Y) + (X. VYX) = 0. 

i.e. X is a connection in the principal U(l)-fibre bundle n : M’ -+ K6 with curvature 
form dX. Finally it turns out that M’ is the seven-dimensional sphere. 

It remains to discuss the case of dim(G) = 8. In this case, the group G coincides with 
G(m) = SU(3) and acts on M7 with cohomogeneity two. The subgroups of SU(3) and their 
dimensions are: 

SO(3) 3 

S(U(2) x U(1)) 4 

W(2) 3 

U(1) x U(1) 2 

U(1) 1 

The orbit G/G(m*) for any point m* E M7 is therefore either a point or at least a four- 
dimensional submanifold. The group G(m*) = S(U(2) x U( 1)) cannot occur since the 
Euler characteristic of G/G(m*) = SU(3)/S(U(2) x U( 1)) = @P2 is not zero (Theorem 
6.6). On the other hand, near the point m E M’ all orbits are of type SU(3)/SU(2). Since the 
set of all principal orbits of the G-action is dense, the type of the principal orbit is G(n7*) = 

SU(2). Consequently, we see that G = SU(3) acts on M’ with two orbit types only. There 
is a finite set y) , . . yk of closed geodesics in M’ such that G(mi) = SU(3) (m; E y;) and 
any other orbit is of type SU(3)/SU(2) = S5. There exists only one geodesic y. Indeed. 
Y = M’/SU(3) is a two-dimensional manifold with k boundary components and 

M7 - {yl.. . , J+) --, WY) 

is an S’-fbration. On the other hand, we have 

0 = nj(M7) = rr,(M’- (~1.. . . . yk}) = nt(lnt(Y)) 

and Y = D’ has only one boundary component. Consequently. M’ is a seven-dimensional 
Einstein manifold with isometry group SU(3) and the principal orbits are of type StJ(3)/ 
W(2); there exists only one exceptional orbit - the fixed-point set of SU(3). It turns out 
that M’ is isometric to the standard seven-dimensional sphere S’ (M’ is topologically the 
sphere and the metric is an SU(3)-invariant Einstein metric with respect to the usual action 
of SU(3) c SO(6) c SO@) see [3]). n 
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Corollary 6.10. Let (M7, w3) be a simply connected, compact manifold with nearly par- 
allel G2-structure not isometric to the sphere S’. Then 
(i) the dimension of the automorphism G = Aut(M7, w3) has dimension 5 13; 

(ii) any isotropy subgroup G(m) has dimension 5 6. 

7. Nearly parallel Gz-structures with large symmetry group 

In this section we will classify all seven-dimensional compact, simply connected man- 
ifolds with a nearly parallel G2-structure and symmetry group of dimension at least 10. 
This classification includes in particular the classification of compact, simply connected 
homogeneous nearly parallel G2-structures. 

Let (M7, g) be a compact, simply connected seven-dimensional nearly parallel G2- 
manifold different from the sphere S7. Let G be the connected component of the auto- 
morphism group of the G2-structure. We already know that 

dim(G) 5 13 and dim(G(m)) 5 6 for any pointm E M’ 

holds. We will discuss the spaces case by case depending on the dimension of the group G. 
Case 1: dim(G) = 13. In this case the dimension of the isotropy group G(m) is six for 

any point m E M7 and the group G acts transitively on M’ = G/G(m). There exists only 
one connected six-dimensional subgroup of the group G2 (see [ 121) namely the isotropy 
group of the exceptional orbit of the Gz-action on the Grassmannian manifold G3(R7) (see 
Proposition 2.6). The Lie algebra of this subgroup is defined by the relations: 

@12+W34+@56=0, w17+w36+w45 =o, w27 + w35 - W46 = 0, 

WI3 = 014 = WI5 = W16 = W23 = 024 = W25 = W26 

= 037 = 047 = 0,57 = w67 = 0 

and the subgroup is isomorphic to G(m) = SO(4) = [SU(2) x SL1(2)]/{fl}. Denote 
by G* and G*(m) the 2-fold covering of the group G, respectively, of the group G(m). 
Then G* is a compact, simply connected 13-dimensional Lie group containing a subgroup 
isomorphic to G*(m) = Sp (1) x Sp (1). Using the classification of simple Lie groups we 
deduce that G* is isomorphic to G* = Sp (2) x Sp(1). Consequently, the homogeneous 
Einstein manifold M7 is of type M7 = [Sp (2) x Sp (l)]/[Sp (1) x Sp (l)] and therefore 
M7 is isometric either to the standard sphere S7 or to the squashed sphere S&,,. 

Case 2: dim(G) = 12. In this case the dimension of any isotropy group G(m) is bounded 
by 5 5 dim(G(m)) 5 6. Since the group G2 does not contain a subgroup of dimension 
five we obtain that any isotropy group G(m) has dimension six, i.e. any isotropy group is a 
six-dimensional subgroup of G2 containing the group SO(4) described above: 

SO(4) c G(m) c Gz. 

It is a matter of fact that such a subgroup of G2 coincides with SO(4). Indeed, consider 
the covering Gz/S0(4) --+ Gz/G(m). Any deck transformation g E Gz is homotopic to 
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the identity map and therefore its Lefschetz number coincides with the Euler characteristic 
x (Gz/SO(4)) > 0, a contradiction. Consequently, the group G acts on M7 with one orbit 
type only and M’ is the total space of a fibration over S’ with the fibre F = G/S0(4). On 
the other hand, the exact homotopy sequence of this fibration yields 

--+n,(F)-nl(M’)= 1 -n(S’)=Z-TO(F)= I. 

a contradiction. Finally we see that the case dim(G) = 12 is impossible. 
Case 3: dim(G) = 11. In this case the dimension of any isotropy group G(m) is bounded 

by 4 5 dim(G(m)) 5 6. 
Suppose that dim(G(m)) = 4 for one point m E M’. Then G acts transitively, M’ = 

G/G(m), and the isotropy group G(m) c G2 is connected. Using the list of all connected 
subgroups of the exceptional group G:! (see [ 121) we obtain two possibilities: 
(a) G(m) is the subgroup [W(2) x Cr(l)](&l) of SCr(3). This is in fact the group SU(3)n 

SO(4) and its Lie algebra is given by the equations: 

wl2+w34+W56=0, w36+w45 =o, w3.5 - w46 = 0. 

WI3 = W14 = WI5 = w16 = CO17 = W23 = 024 = W25 = w26 = w27 = 0, 

037 = w47 = w57 = W67 = 0. 

The representation of G(m) in R’ splits into a one-, two- and four-dimensional invariant 
subspace, 

R’ = E’ @ E2 @ E4, 

where E2 = Span(el, ez), E4 = Span(e3, eq, eg. eg) and E’ = Spun(e-)). 
(b) G(m) is the subgroup [U(l) x SU(2)]/(fl] ofSO(4) = (SU(2) x SU(2)]/[fl}. The 

Lie algebra of this group is given by the equations: 

013 = wi4 = w15 = w16 = w23 = w24 = W25 = W26 

= W37 = w47 = w57 = w67 = 0, 

w12 + w34 + w56 = 0, 

WI7 + 036 + 045 = 0, 036 = w45> 02’ + w35 - w46 = 0, w35 = -w46. 

The representation of G(m) in l%’ splits into a three- and four-dimensional invariant 
subspace, 

R’ = F3 @ F4, 

where F3 = Spun(el, e2, e7) and F4 = Spun(eg, e4, es, etj). 
First we consider the case that nt (G) is a finite group. Denote by G* its universal covering 

and lift the isotropy subgroup to G*(m) = Sp (1) x U (1). Then G* is a simply connected 
Lie group of dimension 11 containing the two-dimensional torus T2 c Sp( 1) x U( 1). 
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Moreover, since the Euler characteristic of M’ = G*/G*(m) vanishes we conclude that 
the rank of G* is greater or equal to 3, 

runk(G*) 1 3, dim(G*) = 11, q(G*) = 1. 

The classification of all compact Lie groups yields that G* is isomorphic to SU(3) x SU(2). 
In case (a) the isotropy group G(m) is contained in SU(3) and consequently the space M’ 
admits two real Killing spinors (the G2-structure is of type 2). On the other hand, the 
automorphism group of the G2-structure of the manifold M(3, 2) with two Killing spinors 
described in Section 4 is isomorphic to SU(3) x SU(2), this group acts transitively on 
M’ and the isotropy representation coincides with the representation of G(m) in case (a). 
Hence, in case (a) M7 is isometric to M(3, 2). In a similar way we can handle case (b). 
The manifold N( 1, 1) admits a G2-structure of type 1 (not the 3Sasakian metric!, see 
Sections 4 and 5) and the automorphism group of this G2-structure coincides obviously 
with the isometry group SU(3) x SU(2). A calculation of the isotropy representation yields 
that it coincides with the representation of case (b) and consequently M7 is isometric to 

N(1, 1). 
Suppose now that nt (G) is not a finite group. The exact homotopy sequence 

. . . + n2(M7) - rrt (G(m)) = Z ---f ~1 (G) + 1 

yields that nt (G(m)) = nl (G) = Z. Consider a finite covering G* of G such that G* 
splits into G* = U ( 1) x G 1, where G 1 is a simply connected group of dimension 10. Then 
Gt is isomorphic to Spin(S). The decomposition G* = U(1) x Spin(S) defines a Killing 
vector field X on M’ invariant with respect to the action of Spin(S). Consequently, X has 
a constant length. In particular, at the point m E M7 the isotropy group G(m) preserves 
the vector X(m), i.e. the group G(m) is of type G(m) = W(3) n SO(4) and the isotropy 
representation splits into 

T,(M7) = E’ @ E2 @ E4. 

On the otherhand, the embedding 0 : G*(m) = U( 1) x Spin(3) -+ U(I) x s@(5) = G* 
is given by two injective homomorphisms 

i : spin(3) - Qin(5) ) j : U(1) - U(1) 

(nl(G*/G*(m)) = l!) and by one homomorphism k : U(1) -+ Spin(S), 

o(z, g) = (j(z), k(z) i(g)). 

Therefore the isotropy representation of the space G*/@(G*(m)) considered only as a 
Spin(3)-representation is isomorphic to the isotropy representation of the space Spin(S)/ i 
(Spin(3)). There are only two injective homomorphisms it, iz : Spin(3) -+ Spin(S). The 
first of them it is related to the five-dimensional irreducible representation of SO(3) and 
i2 is the usual inclusion of W(3) into W(5). In case of it we obtain that the isotropy 
representation of the homogeneous space is irreducible and in case of i2 we obtain the 
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isotropy representation of the Stiefel manifold V’s,2 which splits into the irreducible sub- 
spaces Et $ E3 cl+ E3. This contradicts the mentioned decomposition of T, (M7) and finally 
the case G* = U(1) x Spin(S) is not possible. 

We discuss now the case that any isotropy group G(m) is a six-dimensional group, 
i.e. G(m) = SO(4) c G2. Since dim(G) = 11, any orbit N = G/G(m) c M7 has 
dimension five and its tangent space T,,(N) c T,,, (M’) defines a G(m) = S0(4)-invariant 
subspace of T,,(M’) = 5%‘. The representation of the group SO(4) c G2 c SO(7) splits 
into two S0(4)-irreducible parts, namely 5X’ = F” $ F4 where F” = Span(rl. el, e7) and 
F4 = Spun(e~, ~4. e5. eg), a contradiction. Consequently, this case is impossible. 

Cuse 4: dim(G) = 10. In this case the dimension of any group G(m) is bounded by 
3 5 dim(G(m)) 5 6. 

Suppose that dim(G(m)) = 3 for one point m E M’. Then G acts transitively, M7 = 
G/G(m), and the isotropy group G(m) c G2 is connected. Using the list of all con- 
nected subgroups of the exceptional group G2 (see [12]) we obtain four possibilities. In 
any case, G(m) is isomorphic to SO(3) or to SQ2). Since nt (M7) = 1 we obtain n(G) = 
nt (G(m)) = Oor Hz. Consider the universal coverings G* and G*(m) = Spin(3). Then G* 
is a simply connected Lie group of dimension 10. Moreover, since the Euler characteristic 
of M’ = G/G*(m) vanishes we conclude that the rank of G* is greater or equal to 2. 

rrrnk(G*) > 2, dim(G*) = 10, rr,(G*) = 1. 

The classitication of all compact Lie groups yields that G* is isomorphic to Spin(S) and 
the manifold M7 is isometric to the Stiefel manifold Vs.2 or to the spaces SO(S)/SO(3) 
described in Section 4. 

Suppose now that the isotropy group G(m) is a four-dimensional subgroup for one point 
m E M7. Then G(m) is one of the two subgroups of Gz considered in the discussion of the 
case dim(G) = 11. In particular, G(m) is a connected subgroup. The orbit G m through 
m is a six-dimensional manifold, but only the group G(m) = SU(3) n SO(4) c Gz has 
a six-dimensional invariant subspace. Consequently, G/G(m) is the principal orbit of the 
G-action on M’ and there are no other orbits of dimension six. But exceptional orbits do 
not exist at all. Indeed, since SU(3) cannot occur as an isotropy subgroup, an exceptional 
orbit must be of type 0 4 = G/S0(4). However, the isotropy representation of SO(4) is 
F” @ F4. a contradiction to Corollary 6.7. Finally the G-action defines a fibration M’ - 
M7/ G = S’ and the exact homotopy sequence yields that M’ cannot be simply connected. 

It remains to discuss the situation where any orbit is a four-dimensional manifold and 
every isotropy group G(m) coincides with SO(4). In this situation we can apply the same 
argument as before and we obtain again a contradiction to Corollary 6.7. 

In particular we proved the following: 

Theorem 7.1. Any compact nearly parallel &-manifold with automorphism group of di- 
mension dim(G) > 10 is homogeneous. 

Probably there exist non-homogeneous nearly parallel G2-manifolds admitting an auto- 
morphism group of dimension 9,8, . . . However, explicit non-homogeneous examples with 
a nine- or eight-dimensional automorphism group up to now are not known. 
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On the other hand, using similar arguments as before one can finish the classification of 
compact, homogeneous nearly parallel G2-manifolds. It turns out that in case dim(G) 5 9 
the space is isometric to Q( 1, 1, 1) or to one of the manifolds, N(k, I). 

Theorem 7.2. Any compact, simply connected, homogeneous nearly parallel Gz-manifold 
is one of the spaces described in Tables l-3. 
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